УДК 621.391.01

# ОЦЕНКА МОЩНОСТИ ИНТЕРМОДУЛЯЦИОННЫХ ПОМЕХ ДЛЯ СИГНАЛОВ С ОРТОГОНАЛЬНЫМ ЧАСТОТНЫМ МУЛЬТИПЛЕКСИРОВАНИЕМ

Л. Е. Назаров<sup>1</sup>, А. С. Зудилин<sup>2</sup>

<sup>1</sup>Институт радиотехники и электроники им. В.А.Котельникова РАН, г. Фрязино <sup>2</sup>ОАО "Российские космические системы", г. Москва

Получена 24 июня 2011 г.

Аннотация. Приведены методики оценки мощности интермодуляционных помех на выходе передатчика как нелинейного устройства для сигналов с частотным ортогональным мультиплексированием, характеризуемых высокими значениями пик/фактор.

Ключевые слова: нелинейности передатчика, OFDM сигналы, интермодуляционные помехи.

**Abstract.** This paper presents the methods for power evaluation of intermodulation distortions due to nonlinear amplifier for OFDM signals.

**Key words:** nonlinear power amplifier, OFDM signals, AM/AM and AM/PM characteristics, intermodulation distortion.

# Введение

Ансамбли сигналов с ортогональным частотным мультиплексированием известны в литературе как OFDM сигналы (orthogonal frequency-division multiplexing) [1]. Данные сигналы обладают рядом свойств, определяющих перспективность их применения для передачи информации по каналам с многолучевостью. OFDM сигналы являются базовыми для ряда форматов широкополосных систем связи: IEEE 802.16 (WiMax), 3GPP-LTE (Third Generation Partnership Project – Long Term Evolution), IEEE 802.12.11 [1,2].

Одним из недостатков OFDM сигналов является их большое значение параметра пик/фактор. Это приводит к появлению интермодуляционных помех на выходе усилителя мощности передатчика как нелинейного устройства. Актуальной является проблема оценки мощности данных помех. В статье приведены методики оценки мощности рассматриваемых помех, даны результаты расчетов с использованием этих методик для модели передатчика на основе лампы бегущей волны.

### 1. Постановка задачи

Многочастотные сигналы с ортогональным частотным мультиплексированием представляют сумму N гармонических сигналов, ортогональных на интервале времени определения (0,T) [1]. Спектры составляющих сигналов пересекаются в общей полосе, поэтому OFDM сигналы характеризуются большей частотной эффективностью, чем ортогональные сигналы с частотным разделением, не имеющих пересечения спектров [3].

Формирование OFDM сигналов производится следующим образом. На основе последовательности двоичных кодовых символов длительностью L, поступающей на вход модулятора сигналов, формируется блок длительностью N комплексных дискретных символов { $\dot{\alpha}_0, \dot{\alpha}_1, ..., \dot{\alpha}_{N-1}$ }, которые определяют комплексную огибающую OFDM сигналов

$$\dot{s}(t) = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} \dot{\alpha}_m \cdot \exp(j2\pi f_m t) \,. \tag{1}$$

Объем алфавита символов  $\dot{\alpha}_m$  равен J. Параметры L, N, J связаны соотношением  $L = N \log_2 J$ . Ортогональность составляющих сигналов в (1) на интервале (0, T) обеспечивается выбором частот  $f_m = \frac{m}{T}$  для двумерных сигналов (многофазовая модуляция ФМ-М) или  $f_m = \frac{m}{2T}$  для одномерных сигналов (двухфазовая модуляции ФМ-2). На вход передатчика поступает вещественный сигнал  $s(t) = \text{Re}\{\dot{s}(t)\exp(j2\pi f_0 t)\}$ , здесь  $f_0$  - несущая частота.

Важным параметром сигналов является пик/фактор  $\sigma_s^2 = \max_t |s(t)|^2 / \sigma^2$ 

[3,4], определяющий динамический диапазон сигналов. Здесь  $\sigma^2$  - средняя мощность сигналов. Для высоких значений  $\sigma_s^2$  необходимо принимать во внимание интермодуляционные помехи, возникающие за счет влияния передатчика как нелинейного устройства.

OFDM сигналы характеризуются высокими значениями пик/фактора - для составляющих сигналов с постоянной мощностью верно соотношение  $\sigma_s^2 = 2N$  [1]. Теоретическое оценивание мощности интермодуляционных помех OFDM сигналов составляет суть рассматриваемой задачи.

### 2. Модели нелинейностей

Рассмотрим принятые в литературе модели нелинейностей передатчика амплитуда/амплитуда (AM/AM) и амплитуда/фаза (AM/ФМ). Для входного узкополосного сигнала с комплексной амплитудой  $\dot{s}(t) = |\dot{s}(t)| \exp(j\theta(t))$  комплексная амплитуда сигнала с выхода передатчика, как нелинейного устройства, может быть записана в виде [4]

$$\dot{y}(t) = G(|\dot{s}(t)|) \cdot \exp(\theta(t) + \Omega(|\dot{s}(t)|)).$$
(2)

Здесь  $G(x), \Omega(x)$  - нелинейности AM/AM и AM/ $\Phi$ M.

Для передатчиков на основе лампы бегущей волны (ЛБВ) модельные нормализованные представления  $G(x), \Omega(x)$  имеют вид [4]

$$G(x) = \frac{2x}{1+x^2}, \qquad \Omega(x) = \frac{\pi}{3} \frac{x^2}{1+x^2}.$$
(3)

В точке насыщения при x = 1 имеем G(x) = 1,  $\Omega(x) = \pi/6$ .

Известные методы борьбы с нелинейностями основаны на линеаризации каналов, а также на снижении мощности OFDM сигналов на входе передатчика с целью его работы в режиме, близком к линейному режиму.

Суть методов линеаризации - предварительное искажение сигналов на входе передатчика  $\hat{s}(t) = F(|\dot{s}(t)|) \cdot \exp(\theta(t) + \Phi(|\dot{s}(t)|))$  с целью компенсации амплитудной и фазовой нелинейностей. Для этого необходимо, чтобы функции F(x),  $\Phi(x)$  являлись решениями системы уравнений [4]

$$G(F(|\dot{s}(t)|)) = |\dot{s}(t)|, \qquad (4)$$

$$\Omega(F(|\dot{s}(t)|)) + \Phi(|\dot{s}(t)|) = 0.$$
<sup>(5)</sup>

Методы линеаризации основаны на решениях системы (4), (5) с использованием приближения G(F(x)) к аппроксимирующей функции g(x), при этом функция  $\Phi(x)$  соответствует решению уравнения (5) [5]. В качестве функции g(x) используется симметричное ограничение с зоной линейности

$$g(x) = \begin{cases} \gamma x, \text{если} |\gamma x| \le 1\\ x/|x|, \text{если} |\gamma x| > 1 \end{cases}$$
(6)

Здесь  $\gamma > 0$  - параметр крутизны, при  $\gamma \to \infty$  функция g(x) соответствует предельному симметричному ограничителю без зоны линейности [6].

Влияние линеаризованного канала (6) на OFDM сигналы s(t) тождественно ограничению их амплитуд, что приводит к возникновению интермодуляционных помех [6]. Ниже приведены методики оценки общей мощности этих помех, а также их мощности в полосе OFDM сигналов с модуляцией ФМ-4.

# 3. Методики оценки общей мощности интермодуляционных помех

Методика оценки общей мощности интермодуляционных помех для нелинейного элемента g(x) основана на корреляционной связи входных OFDM сигналов s(t), как гауссовского процесса (при условии N >> 1 [7]) с нулевым средним и дисперсией  $\sigma^2$ , и выходного процесса y(t) = g(s(t)) [8]

$$B_{SV}(\tau) = C \cdot R_S(\tau). \tag{7}$$

Здесь  $B_{sy}(\tau) = E[s(t)y(t+\tau)]$  - взаимная корреляционная функция s(t) и y(t);

$$R_s(\tau) = \frac{E[s(t)s(t+\tau)]}{\sigma^2}$$
 - нормированная корреляционная функция OFDM

сигналов;  $C = \int_{-\infty}^{\infty} xg(x)w_{1s}(x)dx$ ;  $w_{1s}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{\sigma^2}\right)$  - одномерная

### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2011

плотность распределения s(t). Таким образом, мощность полезного сигнала в y(t) равна  $P_s = C^2 / \sigma^2$ , мощность y(t) и полная мощность интермодуляционных помех равны  $P_y = \int_{-\infty}^{\infty} g^2(x) w_{1s}(x) dx$  и  $P_{uhm} = P_y - P_s$ .

Для неинерционного нелинейного элемента g(x) в виде симметричного ограничителя с зоной линейности (6) мощность полезного сигнала  $P_s$  и мощность процесса y(t) определяются соотношениями

$$P_{s} = \gamma^{2} \sigma^{2} \left( 2D \left( \frac{1}{\gamma \sigma} \right) - 1 \right)^{2}, \tag{8}$$

$$P_{y} = \frac{2\gamma^{2}\sigma^{2}}{\sqrt{2\pi}} \left\{ -\frac{1}{\gamma\sigma} \exp\left(-\frac{1}{2\gamma^{2}\sigma^{2}}\right) + \sqrt{2\pi} \left(D\left(\frac{1}{\gamma\sigma}\right) - 0.5\right) \right\} + 2 - 2D\left(\frac{1}{\gamma\sigma}\right).$$
(9)



Здесь  $D(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-z^2/2) dz$  - интеграл ошибок.

Рис.1. Зависимость отношения сигнал/помеха на выходе ограничителя с зоной линейности от снижения мощности OFDM сигналов *P<sub>s</sub>* на *Ibo* на входе передатчика: 1 – общая мощность интермодуляционных помех; 2 – мощность интермодуляционных помех в полосе OFDM сигналов.

На рис.1 приведена зависимость (кривая 1) сигнал/помеха  $\chi = \frac{P_s}{P_{uhm}}$  от

снижения мощности  $\sigma^2$  входных OFDM сигналов на *Ibo* (дБ) по отношению к исходной мощности, равной 1. Кривая рассчитана с использованием соотношений (8), (9) для  $\gamma = 1$ . При *Ibo* = 0 дБ вероятность превышения амплитуды сигналов единичного уровня равна 0.31 и отношение сигнал/помеха равно  $\chi = 9.69$  дБ. При уменьшении мощности сигналов в 2 раза (*Ibo* = 3 дБ) вероятность превышения амплитуды сигналов единичного уровня равна 0.16 и отношение сигнал/помеха увеличивается и равно  $\chi = 13.45$  дБ.



Рис.2. Кривая зависимости сигнал/помеха  $\frac{P_s}{P_{uhm}}$  на выходе симметричного ограничителя с зоной линейности от значений коэффициента крутизны  $\gamma$ .

На рис.2 приведена кривая зависимости сигнал/помеха  $\chi$  от значений коэффициента  $\gamma$ . Кривая рассчитана с использованием соотношений (8), (9) для OFDM сигналов с мощностью  $\sigma^2 = 1$ . При увеличении  $\gamma$  значения  $\chi$  уменьшаются, приближаясь к минимальному предельному значению  $\chi_{MUH}$ .

Для коэффициента  $\gamma \to \infty$  функция нелинейности g(x) (6) соответствует предельному симметричному ограничителю без зоны линейности, при этом

имеем  $P_s = \frac{2}{\pi}$ ,  $P_y = 1$  и отношение сигнал/помеха равно  $\chi_{MUH} = \frac{2}{\pi - 2} \cong 1.757$ (2.45 дБ). Это значение получено предельным переходом в (8), (9) с использованием приближения  $F(x) \cong 0.5 + \frac{x}{\sqrt{2\pi}}$  для x << 1. Результаты компьютерного моделирования для OFDM сигналов, содержащих  $N \ge 250$ составляющих сигналов с ФМ-4 модуляцией, подтвердили приведенное  $\chi_{MUH}$ . Для ФМ-4 модуляции верным является соотношение значение  $\frac{P_s}{P_{uum}} = \frac{2E_{\tilde{0}}}{N_0}$ , где  $E_{\tilde{0}}$  - энергия сигналов на информационный бит,  $N_0$  односторонняя спектральная плотность мощности помех. Для соответствующего значения  $\frac{E_{\tilde{0}}}{N_0} = \frac{\chi_{MUH}}{2} = 0.8785$  (-0.56 дБ) вероятность ошибки на бит при приеме OFDM сигналов без кодирования равна  $P_{\tilde{o}} = 0.091$ . Это совпадает со значением  $P_{\tilde{o}}$ , полученным авторами путем моделирования.

# 4. Оценка мощности интермодуляционных помех в полосе OFDM сигналов

Рассмотрим OFDM сигналы с несущей частотой  $f_0$ , полосой W, мощностью  $\sigma^2$  и нормированной корреляционной функцией  $R(\tau) = R_s(\tau)\cos(2\pi f_0\tau)$ . Двусторонний нормированный спектр мощности F(f)сигналов можно рассматривать как прямоугольный  $F(f) = \frac{1}{2W}$  при  $|f - f_0| \leq \frac{W}{2}$ , иначе F(f) = 0, и относительно корреляционной функции в области видеочастот  $R_s(\tau)$  справедливо соотношение  $R_s(\tau) = \frac{\sin(\pi W \tau)}{\pi W \tau}$  [7].

Анализ интермодуляционных помех в полосе W сначала проведем для предельного симметричного ограничителя без зоны линейности. В этом случае функция корреляции  $B(\tau)$  имеет вид [8,9]

$$B(\tau) = \frac{2}{\pi} \arcsin(R(\tau)) = \frac{2}{\pi} R(\tau) + \sum_{n=1}^{\infty} \frac{\left[(2n-1)!\right]^2}{(2n+1)} R^{2n+1}(\tau) \,. \tag{10}$$

### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2011

Здесь (2n-1)!! - произведение нечетных положительных целых чисел до (2n-1) включительно.

Член 
$$\frac{2R(\tau)}{\pi}$$
 (10) соответствует полезному сигналу с мощностью  $P_s = \frac{2}{\pi}$  и

спектральной плотностью  $F_s(f) = \frac{P_s}{2W}$ .

В полосу OFDM сигналов попадают интермодуляционные помехи, соответствующие членам суммы (10) с множителем  $\cos(2\pi f_0 t)$ . Корреляционная функция  $B_0(\tau)$  для данных помех имеет вид [8]

$$B_0(\tau) = \sum_{n=2}^{\infty} \frac{r_{2n-1}^2}{n!(n-1)!2^{2n-2}} R_s^{2n-1}(\tau) \cos(2\pi f_0 \tau).$$
(11)

$$r_{2n-1} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\sigma x) H_{2n-1}(x) \exp\left(-\frac{x^2}{2}\right) dx.$$
(12)

Здесь 
$$H_n(x) = (-1)^n \exp\left(\frac{x^2}{2}\right) \frac{d^n}{dx^n} \left(\exp\left(-\frac{x^2}{2}\right)\right)$$
 - полиномы Эрмита; для

рассматриваемой нелинейности f(x) справедливо соотношение  $r_{2n-1} = -H_{2n-2}(0) = \frac{2}{\sqrt{2\pi}} (-1)^{n+1} (2n-3)!!$  [9].

Выражение для оценки минимального количества n членов в ряде Тейлора (11), обусловливающее абсолютную погрешность  $\mathcal{E}(n)$  при вычислении функции корреляции  $B_0(\tau)$ , имеет вид

$$\frac{r_{2n-1}^2}{n!(n-1)!2^{2n-2}} < \varepsilon(n).$$
(13)

В соответствии с теоремой Хинчина-Винера спектральная плотность интермодуляционных помех  $F_{uhm}(f)$  в полосе OFDM сигналов может быть определена путем преобразования Фурье функции  $B_0(\tau)$  (11) [8]. При этом спектральная плотность  $F_n(f)$ , соответствующая корреляционной функции  $R_s^n(\tau)$ , может быть вычислена с использованием свертки

$$F_n(f) = \int_{-\infty}^{\infty} F_{n-1}(x)F(f-x)dx$$
. Этот подход позволяет оценить спектральную

плотность интермодуляционных помех  $F_n(f)$  в полосе OFDM сигналов и

оценить зависимость значений сигнал/помеха  $\chi(f) = \frac{F_s(f)}{F_{uhm}(f)}$  от частоты f.



Рис. 3. Кривая 1 – спектральная плотность OFDM сигналов, соответствующая корреляционной функции  $R_s(\tau) = \frac{\sin(\pi W \tau)}{\pi W \tau}$  (W = 500 Гц); кривая 2 – спектральная плотность интермодуляционных помех, соответствующая  $R_s^3(\tau)$ ; кривая 3 – спектральная плотность интермодуляционных помех, соответствующая  $R_s^5(\tau)$ .

На рис. З в качестве примера приведена кривая 1 исходного спектра ОFDM сигналов в области видеочастот, соответствующего корреляционной функции  $R_s(\tau) = \frac{\sin(\pi W \tau)}{\pi W \tau}$  для значения W = 500 Гц, а также кривые для спектров интермодуляционных помех, соответствующих корреляционным функциям  $R_s^3(\tau)$  (кривая 2) и  $R_s^5(\tau)$  (кривая 3).



Рис.4. Зависимость сигнал/помеха  $\chi(f) = \frac{F_s(f)}{F_{uhm}(f)}$  от частоты в полосе OFDM сигналов: 1 - предельный ограничитель без зоны линейности; 2 - предельный ограничитель с зоной линейности.

На рис.4 (кривая 1) приведена зависимость  $\chi(f)$ , вычисленная с использованием данной методики для рассматриваемого ансамбля OFDM сигналов с полосой W = 500 Гц. Вычисление произведено с использованием n = 50 членов в (11), что соответствует точности оценки  $B_0(\tau)$  не хуже  $\mathcal{E} = 0.001.$ Видна неравномерность распределения мощности интермодуляционных помех в полосе OFDM сигналов - различие значений в центре  $\chi(0) = 7.95$  дБ и по краям полосы  $\chi(-250) = \chi(250) = 9.32$  дБ равно 1.37 дБ. Значение  $\chi(0) = 7.95$  дБ в центре полосы совпадает со значением, приведенным в [4]. Кривая 1 на рис.4 согласуется с результатами моделирования, приведенными в работе [10], где показано повышение сигнал/помеха на краях полосы (9.16 дБ) и понижение в центре полосы сигналов (7.8 дБ). Наблюдаемое различие оценок моделирования  $\chi(f)$  по объясняется несовершенством к теоретическим оценкам отношению используемой методики моделирования [10], не учитывающей вклада продуктов нелинейности анализируемого составляющего сигнала в мощность интермодуляционных помех.

#### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2011

Оценим мощность интермодуляционных помех в полосе W для симметричного ограничителя с зоной линейности g(x) (6) ( $\gamma = 1$ ). В этом случае сигнальная составляющая на выходе соответствует величине  $\eta$ , задаваемой интегральным соотношением (12). Результирующее выражение для мощности полезных сигналов  $P_s$  после выполнения интегрирования (12) имеет

вид 
$$P_s = \sigma^2 \left( 2D \left( \frac{1}{\sigma} \right) - 1 \right)^2$$
 и совпадает с выражением (8).

Корреляционная функция  $B_0(\tau)$  для данных помех в полосе OFDM сигналов определяется соотношением (11), соответствующее выражение для множителя  $r_{2n-1}^2$  после выполнения интегрирования (12) имеет вид  $r_{2n-1}^2 = \frac{2\sigma^2}{\pi} H_{2n-3}^2 \left(\frac{1}{\sigma}\right) \exp\left(-\frac{1}{\sigma^2}\right), n \ge 2$  [9].

На рис.1 (кривая 2) приведена зависимость усредненных значений сигнал/помеха  $\chi = \frac{P_s}{P_{uhm}}$  (дБ) от снижения мощности  $\sigma^2$  входных OFDM сигналов на *Ibo* (дБ) по отношению к исходной мощности, равной 1. Эта кривая рассчитана с использованием соотношений (11), (12). При *Ibo* = 0 дБ отношение  $\chi$  равно  $\chi = 13.66$  дБ. При уменьшении мощности сигналов отношение сигнал/помеха увеличивается и для значения *Ibo* = 3 дБ (уменьшение мощности сигналов в 2 раза) отношение  $\chi$  равно  $\chi = 17.23$  дБ. Видно также, что общая мощность интермодуляционных помех превышает мощность данных помех в полосе OFDM сигналов на 4 дБ.

На рис.4 (кривая 2) приведена зависимость сигнал/помеха  $\chi(f)$ . Кривая соответствует значению *Ibo* = 0 дБ. Видна неравномерность распределения мощности интермодуляционных помех в полосе OFDM сигналов - различие в центре  $\chi(0) = 12.85$  дБ и по краям полосы  $\chi(-250) = \chi(250) = 14.58$  дБ равно 1.73 дБ.

# Заключение

Приведены методики оценивания общей мощности интермодуляционных помех для OFDM сигналов и мощности этих помех в полосе сигналов на выходе передатчика как нелинейного устройства. Основу данных методик теории нелинейных преобразований составляют методы гауссовских случайных процессов. С использованием этих методик произведены оценки мощностей интермодуляционных помех для ансамблей OFDM сигналов с числом составляющих сигналов, превышающим 250 (при этом сигналы можно рассматривать как гауссовский процесс). Показано, что для данных помех характерна неравномерность распределения их мощности в полосе OFDM сигналов - различие значений в центре и по краям полосы достигает 1.7 дБ для модели нелинейности в виде ограничителя с зоной линейности. Это обусловливает необходимость разработки соответствующих процедур обработки OFDM сигналов при их приеме с учетом моделей помех, учитывающих данное свойство неравномерности их спектра.

### Литература

1. Hara S., Prasad R. Multicarrier Techniques for 4G Mobile Communications. Artech House. Boston. 2003.

2. Liu H., Li G. OFDM-Based Broadband Wireless Networks. A John Wiley & Sons. New Jersey. 2005.

3. Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации. М.: Радио и связь. 1982.

4. Saleh A.A.M., Salz J. Adaptive Linearization of Power Amplifiers in Digital Radio Systems.// The Bell System Technical Journal. 1983. Vol.62. N4. P.1019-1033.

5. Benedetto M-G.D., Mandarini P. An Application of MMSE Predistortion to OFDM Systems.// IEEE Transactions on Communications. 1996. Vol.44. N11. P.1417-1420.

6. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ. М.:Связь. 1979.

## <u>ЖУРНАЛ РАДИОЭЛЕ ТРОНИКИ, N7, 2011</u>

7. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь. 1986.

8. Левин Б.Р. Теоретические основы статистической радиотехники. Книга первая. М.:Сов. радио. 1969.

9. Миддлтон Д. Введение в статистическую теорию связи. Пер. с англ. М.: Сов. радио. 1961.

10. Назаров Л.Е., Зудилин А.С. Влияние нелинейностей передатчика на многочастотные сигналы с ортогональным частотным мультиплексированием.

//Журнал радиоэлектроники (электронный журнал). http://jre.cplire.ru/jre/dec10/index.html. 2010. №12. Декабрь.