УДК 621.391.01

РАЗРАБОТКА И РЕАЛИЗАЦИЯ СИГНАЛЬНО-КОДОВОЙ КОНСТРУКЦИИ ДЛЯ ВЫСОКОСКОРОСТНОГО КАНАЛА БПЛА-ЗЕМЛЯ

Л. Е. Назаров ¹, Е. В. Игошин ², А. С. Зудилин ² ¹ Институт радиотехники и электроники им. В.А.Котельникова РАН, г. Фрязино ² ОАО "Российские космические системы", г. Москва

Получена 2 июля 2013 г.

Аннотация. Приведены результаты по разработке, реализации и полевым испытаниям сигнально-кодовой конструкции, разработанной для высокоскоростного канала «беспилотный летательный аппарат - земная приемная станция».

Ключевые слова: беспилотный летательный аппарат, многолучевость, блоковый турбо-код.

Abstract. This paper presents the results of development and realization of error-correcting coding for unmanned aerial vehicle system high-rate telemetry channel.Key words: unmanned aerial vehicle system, multipath channel, block turbo code.

Введение

Организация высокоскоростного канала «беспилотный летательный аппарат (БПЛА) - земная приемная станция (3С)», обеспечивающего передачу информации с требуемыми вероятностными характеристиками, возможна с использованием соответствующих сигнально-кодовых конструкций (СКК) [1]. Особенностью данной линии связи является многолучевость распространения радиоволн и, соответственно, замирание сигналов [2]. Это определяет необходимость использования СКК с вероятностно-энергетическими характеристиками, близкими к предельным характеристикам, обеспечивающим надежную передачу по рассматриваемой нестационарной линии с вариациями отношения сигнал/помеха.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2013

Вместе с тем, устройства формирования и приема этих СКК должны обеспечивать высокоскоростную передачу в реальном времени, что предполагает приемлемую сложность технической реализации процедур формирования и приема с использованием "мягких" решений с выхода демодулятора сигналов средствами цифровой вычислительной техники.

В данной работе приведены результаты по разработке, реализации и апробации СКК, основу которой составляет блоковый турбо-код [3]. Эта СКК имеет удовлетворительные технические и вероятностные характеристики относительно сформулированных критериев качества. Определены также основные направления совершенствования рассматриваемой СКК, уменьшающие эффективность влияния многолучевости на вероятностные характеристики передачи информации.

1. Постановка задачи

Суть рассматриваемой задачи - разработка, программно-аппаратная апробация СКК, реализация И на реальной линии обеспечивающей высокоскоростную (до 50 - 100 Мбит/сек) передачу информации по каналу БПЛА - наземный приемный пункт, особенностью которого является наличие суммы *L* копий сигналов $A_j s_k (t + \tau_j, \varphi_j), k = 1, 2, ..., M; j = 1, 2, ..., L$ С различными временными задержками τ_i , произвольными начальными фазами $\varphi_i \in [0, 2\pi]$ и амплитудами A_i на входе приемного устройства за счет многопутевости распространения.

2. Модель канала БПЛА - земля

Рассматриваемая модель канала включает двухлучевое распространение сигналов (L=2) - прямой луч и луч, отраженный от земной поверхности. Из-за многолучевости возникают замирания радиосигналов (мультипликативные помехи) [2], характер которых (частотно-селективные, частотно-неселективные (дружные), размах вариаций мощности сигнальной составляющей, время стационарности замираний) определяются многими параметрами - углом

скольжения зеркального луча φ , электрическими свойствами земной поверхности, скоростью и высотой БПЛА, длиной волны, статистическими свойствами неровностей земной поверхности.

При вертикальной поляризации коэффициент отражения *R_e* для гладкой земной поверхности задается соотношением [2]

$$\dot{R}_{\theta} = \left| \dot{R}_{\theta} \right| \exp(-j\theta) = \frac{\dot{\varepsilon} \sin \varphi - \sqrt{\dot{\varepsilon} - \cos^2 \varphi}}{\dot{\varepsilon} \sin \varphi + \sqrt{\dot{\varepsilon} - \cos^2 \varphi}}.$$
(1)

Здесь $\dot{\varepsilon} = \varepsilon + j60\lambda\delta$, ε - электрическая проницаемость поверхности, δ - удельная электрическая проводимость поверхности, θ - угол потери фазы сигнала при отражении, λ - длина волны.

При условии $\varphi \to 0$ для конечных значений ε , δ справедливо соотношение $\dot{R}_{\theta} \to -1$.

В общем случае при анализе второго луча нужно учитывать его две компоненты – зеркальную и диффузную составляющие.

Из теории рассеяния на статистически неровной поверхности известно, что модуль коэффициента отражения $V_{omp}(\varphi)$ для поверхности с нормальным распределением высот неровностей в направлении зеркального отражения определяется соотношением [4]

$$V_{omp}(\varphi) = \left| \dot{R}_{\theta} \right| \exp\left(-\left(\frac{2\pi\sigma\sin\varphi}{\lambda}\right)^2 \right).$$
(2)

Здесь λ - длина волны; σ^2 - дисперсия неровностей. Данное выражение получено путем применения метода Кирхгофа (известного также как метод касательной плоскости), используемого для решения задач дифракции на плоских экранах [4].

Отражение радиоволн от неровной поверхности можно рассматривать в приближении касательной плоскости при выполнении условия

 $\sin \varphi >> \left(\frac{2\pi R}{\lambda}\right)^{-1/3}$, то есть, чтобы локальные радиусы кривизны поверхности в точке отражения *R* превышали длину волны λ .

В типичном случае кинематических характеристик БПЛА более точным является модель распространения радиоволн над поверхностью с малыми пологими неровностями, для которых выполняется условие Релея [4] $\sigma < \frac{\lambda}{8\sin\varphi}$. В этом случае, разлагая (2) в ряд, имеем $V_{omp}(\varphi) \cong \left| \dot{R}_{g} \left(1 - \left(\frac{2\pi\sigma\sin\varphi}{\lambda} \right)^{2} \right) \right|$. Это совпадает с соответствующим выражением относительно $V_{omp}(\varphi)$, полученным с использовании метода теории возмущений при kl >>1 и $\varphi >> (kl)^{-1/2}$ для достаточно гладких поверхностей. Здесь l - радиус корреляции [4].

При анализе экспериментальных измерений авторами использовалась двухлучевая модель с коэффициентом отражения $V_{omp}(\varphi)$ (2) с уточнением распространения радиоволн за счет влияния тропосферы. Влияние тропосферы учитывалось стандартным путем увеличения дальности прямого луча БПЛА-земля и отраженного луча за счет их криволинейного распространения по отношению к прямолинейному распространению лучей в предположении нормальной тропосферы ($\frac{\partial n}{\partial h} = -0.042$) [2].

На рис.1 приведена схема, иллюстрирующая распространение прямого (1) и отраженного (2) от земной поверхности лучей. Результирующий множитель ослабления *γ* мультипликативной помехи для данной схемы имеет вид

$$\gamma = \sqrt{1 + 2V_{omp}\cos\left(\theta + \frac{2\pi}{\lambda}\Delta r\right) + V_{omp}^2} .$$
(3)

Здесь Δr - разность хода прямого и отраженного лучей.

Рис.1. Схема распространения прямого (1) и отраженного (2) лучей.

При малых углах скольжения φ разность хода прямого и отраженного лучей на входе приемной антенны земной станции без учета влияния тропосферы определяется соотношением

$$\Delta r = \frac{2h_{\overline{B\Pi}\overline{J}A}h_{3C}}{r}.$$
(4)

Соответствующая относительная временная задержка прямого и отраженного лучей au_{3ad} определяется соотношением [2]

$$\tau_{3a\partial} = \frac{2h_{\overline{B\Pi}\overline{\Pi}A}h_{3c}}{cr}.$$
(5)

Здесь c - скорость света; $h_{БПЛА}$ - высота БПЛА; h_{3c} - высота приемной антенны земной станции; r - расстояние БПЛА-ЗС, приведенное на рис.1 для схемы распространения прямого и отраженного лучей.

Для значений $h_{БПЛА} \le 1000$ м, $h_{3c} = 2$ м, $r \ge 10000$ м и для полосы частот имеем $\tau_{3a\partial} = 1.3 \cdot 10^{-3}$ мксек, разность хода путей $\Delta F = 50$ ΜГц распространения лучей 0.4 м и $\tau_{3a\partial}\Delta F = 0.065$. Это определяет при этих условиях наличие частотно-неселективных замираний сигналов на входе приемной антенны 3C. Соотношение (3) относительно множителя γ получено при предположении о равенстве амплитуд прямого и отраженного лучей, что справедливо для рассмотренного случая малого различия ИХ хода распространения.

Множитель γ мультипликативной помехи для рассматриваемого случая малого угла скольжения *φ* задается как [2]

 $\gamma = \left| \sin \left(\frac{2\pi h_{BIIJIA} h_{3C}}{\lambda r} \right) \right|.$

(6)

Рис.2. Зависимость множителя ослабления γ мультипликативной помехи от расстояния r (длина волны $\lambda = 0.15$ м, $h_{3c} = 2.75$ м, $h_{БПЛА} = 600$ м (кривая 1),

На рис.2 приведена зависимость множителя ослабления γ от расстояния r > 5000 м. Расчеты произведены с использованием соотношений (1) - (5) для длины волны $\lambda = 0.15$ м, $h_{БПЛА} = 600$ м (кривая 1), $h_{БПЛА} = 900$ м (кривая 2), $h_{3c} = 2.75$ м. Кривые соответствуют влажной почве с электрическими характеристиками $\varepsilon = 10$ и $\delta = 10^{-2}$, параметр неровностей $\sigma = 0.2$ м.

Видны интерференционные минимумы значений γ , достигающие -8.5 дБ по отношению к амплитуде прямого сигнала, - для кривой 1 минимум существует на расстоянии 26400 м, для кривой 2 минимум существует на расстоянии 39600 м. Значения множителя ослабления γ не учитывают затухания сигналов за счет удаления от передатчика, которые необходимо включать при вычислении бюджета радиолинии.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2013

Длительность интерференционных замираний τ_{uhmep} определяется рядом параметров: рабочей длиной волны радиосигналов λ , дальностью r, высотами $h_{БПЛA}$ и h_{3c} , скоростью БПЛА. С использованием кривой 2 длительность интерференционных замираний для последнего интерференционного минимума (область А-Б на рис.2) можно оценить значением $\tau_{uhmep} \approx 30$ сек при скорости БПЛА 200 м/с и при уменьшении амплитуды результирующего сигнала в 2 раза по отношению к амплитуде прямого сигнала.

Кроме высоких вероятностных характеристик СКК также должны иметь сравнительно низкую сложность реализации алгоритмов их формирования и приема с использованием "мягких" решений с выхода демодулятора сигналов. Реализация данных алгоритмов средствами цифровой вычислительной техники должна обеспечить высокоскоростную передачи информации БПЛА - 3С.

3. Сигнально-кодовая конструкция, ее характеристики

Основу используемой СКК, используемой в линии БПЛА-ЗС, составляет блоковый турбо-код в сочетании с манипуляцией ФМ4.

Кодовые слова блоковых турбо-кодов формируются на основе двух двоичных блоковых кодов C_1 (n_1, k_1) и C_2 (n_2, k_2) и эквивалентны двумерной матрице размером $n_1 \times n_2$. Строки матрицы – кодовые слова кода C_1 , столбцы матрицы - кодовые слова кода кода C_2 [3]. Здесь n, k - длительность кодовых слов и размерность блокового кода. Длительность кодовых слов турбо-кода равна $n = n_1 \cdot n_2$, информационный объем $k = k_1 \cdot k_2$, кодовая скорость R = k/n.

Основу алгоритмов приема блоковых турбо-кодов составляет итеративная обработка входных реализаций, соответствующих составляющим блоковым кодам C_1 , C_2 . Детальное описание этих алгоритмов итеративного приема, согласованных с форматом чисел с плавающей точкой float, используемым в цифровых сигнальных процессоров, и с целочисленным форматом integer, используемым в программируемых логических интегральных схемах (ПЛИС), приведены в работах авторов [5,6].

Параметры используемого блокового турбо-кода: составляющие блоковые коды C_1 и C_2 - коды Хэмминга с дополнительной проверкой на четность с параметрами (128,120), длина кодовых слов - 16384 битов, объем информационного блока - 14400, кодовая скорость - 0.88.

В работе [6] приведена схемотехническая реализация устройств формирования и приема рассматриваемого блокового турбо-кода средствами ПЛИС ХС4VLX40 с использованием формата integer. Данная схемотехническая реализация формирования и приема СКК использована в радиолинии БПЛА-ЗС. По отношению к алгоритму приема с использована в радиолинии БПЛА-ЗС. По отношению к алгоритму приема с использованием формата чисел float алгоритм приема с использованием формата integer характеризуется меньшей эффективностью - энергетические потери достигают 0.4 дБ при наличии в канале аддитивного белого гауссовского шума (АБГШ) [5,6]. Вместе с тем, устройства формирования и приема на основе ПЛИС обеспечивают существенно большие информационные скорости передачи. Схемотехническая реализация данного турбо-кода обеспечивает передачу с информационной скоростью до 120 Мбит/сек [6]. Предельное шенноновское значение $E_{\vec{o}}/N_0$ для кодовой скорости 0.88 и дискретно-непрерывного канала равно 3.2 дБ [7].

Ha рис.3 приведены зависимости вероятности ошибки на информационный бит P_{o} от отношения сигнал/помеха для рассматриваемой СКК, полученные путем моделирования алгоритма приема с использованием формата float (кривая 1) и алгоритма приема с использованием формата integer (кривая 2) при наличии АБГШ. Видно, что вероятность ошибки $P_{\vec{0}} = 10^{-5}$ при использовании алгоритма приема с использованием целочисленного формата integer (кривая 2) достигается при отношении $E_6 / N_0 = 4$ дБ, это значение лишь на 0.8 дБ отличается от предельного значения при условии идеальной синхронизации и отсутствии энергетических потерь аппаратной реализации. Суммарные энергетические потери за счет синхронизации (частотной, тактовой, фазовой) и аппаратной реализации (коэффициент фильтрации rolloff=0.3) по отношению к идеальному приему СКК не превышают 0.7 дБ.

Рис.3. Вероятностные кривые для СКК на основе блокового турбо-кода (16384,14400) (8 итераций): 1 - алгоритм приема с использованием формата чисел float; 2 - алгоритм приема с использованием формата чисел integer.

4.Экспериментальные измерения

Полевые испытания рассматриваемой СКК произведены в период мартапрель 2013 г. Параметры БПЛА: скорость ≈200 км/ч, высота до 1000 м. Параметры СКК: информационная скорость 50 Мбит/с, коэффициент rolloff=0.3, частотная полоса 50 МГц.

Движение БПЛА поясняется прямой А-Б-В-Г на рис.4: интервал А-Б (около 28 км) соответствует движению в прямом направлении от 3С; интервал Б-В соответствует обратному движению к 3С; интервал В-Г соответствует движению в прямом направлении от 3С. Длина анализируемого интервала А-Г около 35 км.

На рис.4 приведена также нормированная кривая 1, отображающая оценки мощности *P* полезного сигнала на входе приемного устройства в зависимости от времени, вычисленные на основе отсчетов сигнального демодулятора. Кривая 2 на рис.4 соответствует значениям нормированного коэффициента ослабления *γ* мультипликативной помехи, вычисленным с

использованием соотношения (6) для высоты антенны ЗС $h_{3c} = 2.75$ м с учетом пространственного затухания амплитуды сигналов за счет расстояния БПЛА-ЗС. Прямая АГ определяет также нижний уровень амплитуды полезного сигнала, соответствующего отношению сигнал/помеха $E_{\tilde{o}}/N_0 = 4.8$ дБ, что соответствует вероятности ошибки $P_{\tilde{o}} < 10^{-5}$. По оси абсцисс отложены значения времени (сек), по оси ординат отложены оценки мощности полезного сигнала P (дБм).

Рис.4. 1 - нормированная кривая оценки мощности полезных сигналов на входе приемной антенны 3С; 2 - нормированный коэффициент ослабления γ мультипликативной помехи с учетом пространственного затухания сигналов.

Кривые 1 и 2 показывают достаточно близкое соответствие модели двухлучевого распространения сигналов реальному поведению мощности сигнала, их расхождение объясняется вариациями углов скольжения φ за счет земного рельефа.

Наличие ошибок наблюдалось в окрестности точки Б при развороте БПЛА в обратное направление. Наличие ошибок наблюдалось также в окрестности точки Г (дальность БПЛА-3С ~ 35 км), где для отношения сигнал/помеха выполнялось условие $E_{\tilde{o}}/N_0 < 4.8$. При дальнейшем движении БПЛА отношение сигнал/помеха превышало требуемое значение 4.8 дБ и безошибочная связь восстановилась.

Приведем основные направления совершенствования СКК и методов обработки, снижающие эффективность влияния многолучевости:

- наиболее перспективным представляется метод пространственного разнесения в сочетании с технологией MIMO (multiple input-multiple out) [3];

- применение эффективных помехоустойчивых кодов с большей избыточностью по отношению к рассмотренному турбо-коду с кодовой скоростью 7/8. Примером является класс низкоплотностных кодов либо турбо-подобных кодов с пониженной сложностью алгоритмов декодирования с кодовой скоростью 1/2. При их использовании требуется $E_{\delta}/N_0 \le 2$ дБ для обеспечения $P_{\delta} < 10^{-5}$ [3], что обусловливает энергетический выигрыш до 2 дБ и более по отношению к рассмотренной СКК и приводит к снижению уровня А-Г на рис.4, определяющего достижение требуемых значений вероятности ошибки P_{δ} ;

- применение антенн с согласованной круговой поляризацией на передающей и приемной сторонах;

- применение метода временного перемежения кодовых символов, а также метода квитирования для рассматриваемой высокоскоростной линии передачи представляется дискуссионным, вследствие приведенных выше оценочных значений требуемых временных задержек.

Заключение

СКК, Приведено описание разработанной для высокоскоростной передачи (50 Мбит/с) БПЛА-ЗС, ее основу составляет блоковый турбо-код в сочетании с ФМ4. Результаты испытаний СКК на реальной радиолинии показали устойчивую безошибочную работу системы передачи информации с дальностью до 35 км на высоте БПЛА не выше 1000 м. Показано также, что одним из основных факторов, ограничивающим рабочую дальность канала БПЛА-ЗС, распространение является двухпутевое радиоволн, обусловливающее гладкие замирания сигналов. Определены основные направления совершенствования СКК и методов обработки, уменьшающих

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2013

эффективность влияния данной многолучевости на вероятностные характеристики передачи информации, - одно из наиболее перспективных направлений связано с технологией MIMO (multiple input-multiple out).

Литература

1. Слюсар В. Радиолинии связи с БПЛА, примеры реализации. //Электроника: Наука, Технология, Бизнес. 2010. №5. Стр.56-60.

2. Долуханов М.П. Распространение радиоволн. М.: Гос. Издательство по вопросам связи и радио. 1960.

Скляр Б. Цифровая связь. Теоретические основы и практическое применение.
 М.: Издательский дом «Вильямс». 2003.

4. Басс Ф.Г., Фукс И.М. Рассеяние волн на статистически неровной поверхности. М.: Наука. 1972.

5. Назаров Л.Е., Головкин И.В. Реализация алгоритмов итеративного приема блоковых турбо-кодов. // Цифровая обработка сигналов. 2009. №2. С.2-6

6. Головкин И.В., Назаров Л.Е. Разработка и реализация алгоритмов итеративного декодирования блоковых турбо-кодов. //Цифровая обработка сигналов. 2010. №4. С.37-40.

7. Зюко А.Г., Фалько А.И., Панфилов И.П., Банкет В.Л., Иващенко П.В. Помехоустойчивость и эффективность систем передачи информации. М.:Радио и связь. 1985.