УДК 538.566.2

РАСПРОСТРАНЕНИЕ АКСИАЛЬНО-СИММЕТРИЧНОЙ МОДЫ ТИПА *E*₀ НА ТОНКИХ ДИССИПАТИВНЫХ ПРОВОДНИКАХ И В ДИЭЛЕКТРИЧЕСКОЙ ТРУБКЕ С ВОДОЙ

К. Ф. Сергейчев¹, Д. М. Карфидов¹, М. В. Шеповалов²

¹ ФГБУН Институт общей физики им. А.М. Прохорова РАН ² Московский государственный университет информационных технологий, радиотехники и электроники

Статья получена 1 июля 2015 г.

Аннотация. Экспериментально определены ограничения для распространения азимутально-симметричных электромагнитных волн типа E_0 по диссипативным стержням из проводника и диэлектрика (вода). Показано, что распространение поверхностной волны Зоммерфельда по проводящему стержню ограничено условием равенства глубины скин-слоя и радиуса стержня. Что касается распространения в микроволновом диапазоне E_0 волны внутри водяного стержня аналогично "оптоволокну", она ограничена частотой отсечки диэлектрического волновода, без какой-либо её зависимости от концентрации соли в воде.

Ключевые слова: поверхностная волна, проводимость, СВЧ, скин-слой, диэлектрик, волновод, диссипация, отсечка, вода, электролит.

Abstract. Limits for propagation of the azimuthally symmetric electromagnetic E_0 modes along the dissipative both conductive and dielectric (water) rods were experimentally determined. It was shown that propagation of the Sommerfeld surface wave in a conductive rod is limited by the condition of equality skin-depth and the rod radius. As for the propagation in microwave range E_0 wave inside the water-rod analogously with "opto-fiber", it is limited by the cutoff frequency of dielectric waveguide, without any dependence on salt concentration in water.

Keywords: surface wave, conductivity, microwave, skin-depth, dielectric, waveguide, dissipation, cutoff, water, electrolyte.

Введение

Известно [1], что металлические и диэлектрические стержни при определенных условиях могут служить открытыми направляющими структурами – волноводами для электромагнитных волн. Реальные проводники и диэлектрики не относятся к числу совершенных и характеризуются комплексными значениями проводимости и диэлектрической проницаемости. Увеличение диссипативных характеристик материалов приводит к затуханию волн на открытых проводящих и диэлектрических волноводах.

В экспериментальной работе проведены исследования цилиндрического проводящего стержня с варьируемой в широких пределах электронной проводимостью и диэлектрического (водяного) столба с варьируемыми диэлектрическими потерями в качестве волноводов радиоволн сантиметрового диапазона с целью выявления их предельных параметров для распространения волн.

Проводящий стержень как волновод

А. Зоммерфельд [1] теоретически показал, что на неидеальном проводнике с конечной проводимостью может распространяться поверхностная волна. Замедляющее действие провода с конечным сопротивлением обусловлено замедлением распространения волны в металле благодаря большой величине комплексного показателя преломления.

На цилиндрическом проводнике малого радиуса $a << \lambda/2\pi$, где $\lambda = 2\pi c/\omega$ – длина волны в вакууме, $\omega = 2\pi f$ – круговая частота, распространяется осесимметричная поверхностная волна типа E_0 , структура которой в области $a \le r \le \infty$ описывается тремя составляющими поля [2]:

$$\dot{E}_{z} = AK_{0}(pr); \dot{E}_{r} = -\frac{ih}{p}AK_{1}(pr); \dot{H}_{\varphi} = -\frac{i\omega\varepsilon_{0}}{p}AK_{1}(pr) \times \exp(hz - \omega t), \quad (1)$$

где: А- амплитуда; $K_0(x) \approx \ln \frac{1,123}{x}, K_1(x) \approx \frac{1}{x}$ функции Макдональда, аппроксимируемые приближенными формулами при значениях аргумента

x≤0,25; *p* – поперечное волновое число; *h* – постоянная распространения волны по проводнику, \mathcal{E}_0 – электрическая постоянная. При *x*>0,25 значения функций с ростом аргумента убывают быстрее.

Проводник с конечной проводимостью σ обладает комплексным поверхностным импедансом,

$$\dot{\zeta} = R_s(1+i) = \frac{1}{\sigma\delta}(1+i) = \frac{\omega\mu\mu_o\delta}{2}(1+i), \qquad (2)$$

где σ - проводимость, μ_0 – магнитная постоянная, $\mu = 1$ - относительная магнитная проницаемость проводника, тогда как

$$\delta = \sqrt{\frac{2}{\omega \mu_0 \sigma}} \tag{3}$$

- глубина проникновения поля волны в проводник (скин-слой). Граничное условие Леонтовича на поверхности проводника, при *r* = *a*,

$$E_z = \dot{\zeta} H_{\varphi}. \tag{4}$$

вместе с уравнениями (1) дает характеристическое уравнение волны E_0

$$(\dot{p}a)\frac{K_0(\dot{p}a)}{K_1(\dot{p}a)} = -i\dot{\zeta}\omega\varepsilon_0 a, \qquad (5)$$

В качестве примера приведем расчетные значения параметров поверхностной волны E_0 [3] для стального проводника проводимостью ~ 10 МСм/м с радиусом a=0,2 см, на частоте 6 $\Gamma \Gamma q$: $\delta \approx 2 \ M \kappa M$; $|\dot{p}| \approx 3 \cdot 10^{-4}$; $h \approx k \approx 1,26 \ \text{см}^{-1}$; $\alpha \approx 4 \cdot 10^{-5} \ \text{сm}^{-1}$. Половина передаваемой вдоль проводника мощности электромагнитной волны $\theta=0,5$ заключена в пределах радиуса $r_{0,5} \approx 6$ см. Фазовая скорость волны, распространяющейся вдоль провода, по отношению к скорости света в пустоте замедленна в отношении $\frac{k}{h}$, которое меньше 1 всего на $3,4 \times 10^{-5}$, тем не менее, этого замедления достаточно для формирования поверхностной волны, переносящей энергию вблизи провода. Всё сказанное справедливо, когда скин-слой много меньше радиуса проводника:

$$\delta << a. \tag{6}$$

Будет ли распространяться поверхностная волна по проводнику с низкой проводимостью при условии, когда

$$\delta \sim a$$
 (7)

при идентичных условиях её возбуждения?

Для проведения эксперимента с проводниками, удовлетворяющими условию (7) нужно оценить, отвечают ли этому условию чистые металлы или их сплавы. В Таблице 1 приведены выборочные данные для проводимости металлов от серебра до висмута и сплава нихром.

Таблица 1

проводник	σ(×10 ⁶), (Ом⋅м) ⁻¹	проводник	σ, (Ом∙м) ⁻¹
серебро	62,5	графит	13500
железо	10,2	грифель, 9Н	310
висмут	0,86	грифель, ПДУ	1,65
нихром	0,89	древесный уголь	

Поскольку радиодиапазон сантиметровых волн наиболее удобен для экспериментов по изучению распространения поверхностных волн, оценим скин-слой при частоте f=6 ГГц, например, для нихрома, обладающего низкой удельной проводимостью, она составляет 7 мкм. Даже на чистом графите, у которого электронная проводимость в 66 раз меньше, скин-слой всё ещё относительно мал ~ 18 мкм. Таким образом, чтобы приблизится к условию (7) в соответствии с (3), нужно либо перейти в область низких радиочастот, либо уменьшить радиус проводника, наконец, можно использовать искусственно созданный композиционный материал, представляющий собой смесь проводника и диэлектрика, у которого проводимость ослаблена как за счет уменьшения плотности свободных электронов, так и за счёт увеличения частоты их столкновений в соответствии с формулой Друде:

$$\sigma = e\tau^2 n/m \tag{8}$$

где *е*, *m* – заряд и масса электрона, τ – средний временной интервал между

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2015

столкновениями электронов, связанными с потерей импульса при рассеянии на дефектах и неоднородностях кристаллической решетки проводника, *n* – концентрация свободных электронов. Малые размеры проводящих зёрен в композите, сильно снижают проводимость из-за рассеяния электронов на их границах.

Среди композиционных материалов, изготовленных в виде тонкого стержня, самыми доступными оказываются грифели карандашей высокой твердости, состоящие из смеси графита с каолином, и грифели, изготовленные из прессованного древесного угля (ПДУ). По данным измерений сопротивления грифелей были рассчитаны значения их проводимости, которые представлены в таблице 1.

Диэлектрический стержень как волновод

Теория [4] диэлектрического волновода круглого сечения, который сегодня стал известен в области телекоммуникаций как оптоволокно [5], была создана в начале 20 века Д. Хондросом и П. Дебаем, учениками А. Зоммерфельда. Диэлектрические волноводы позднее были использованы в радиофизике для создания каналов радиосвязи и направленных диэлектрических антенн. Диэлектрический стержень радиуса a с относительной проницаемостью \mathcal{E}_1 , окруженный диэлектриком с меньшим значением проницаемости $\mathcal{E}_2 < \mathcal{E}_1$, в частном случае, воздухом, может СЛУЖИТЬ волноводом открытым _ направляемых волн. Типы волн в цилиндрическом диэлектрическом волноводе

делятся на азимутально-симметричные поперечно магнитные TM или поперечно электрические TE волны и гибридные EH и HE волны. Ограничимся рассмотрением низшей волны TM типа, волны E_{01} , имеющей во внешнем пространстве сходное с проводящим стержнем распределение компонентов электромагнитного поля: E_z , E_r , H_{ϕ} (1), отличающееся, однако, внутренней структурой поля в диэлектрике [6]:

$$r \leq a: \dot{E}_{z} = AJ_{0}(gr); \dot{E}_{r} = -iA\frac{h}{g}J_{0}'(gr); \dot{H}_{\varphi} = -iA\frac{\omega\varepsilon_{1}}{g}J_{0}'(gr); |\times \exp(hz - \omega t)|$$
(9)
$$r \geq a: \dot{E}_{z} = BK_{0}(pr); \dot{E}_{r} = iB\frac{h}{p}K_{0}'(pr); H_{\varphi} = iB\frac{\omega\varepsilon_{2}}{p}K_{0}'(pr). |\times \exp(hz - \omega t)|$$
(9)

Здесь *А* и *B* – амплитуды, связанные условием непрерывности E_z на границе r = a: $AJ_0(ga) = BK_0(pa)$; *g*, *p* и *h* – поперечные и продольное волновые числа, которые связаны с волновым числом плоской волны в вакууме *k* уравнениями:

$$k^{2} \varepsilon_{1}^{2} - g^{2} = h^{2}; k^{2} \varepsilon_{2}^{2} + p^{2} = h^{2}, \qquad (10)$$

Значения волновых чисел находятся из совместного решения уравнения (10) и характеристического уравнения:

$$\frac{\varepsilon_1 J_0'(ga)}{gaJ_0(ga)} = \frac{\varepsilon_2 K_0'(pa)}{paK_0(pa)}$$
(11)

Частота отсечки распространения *E*₀ волны:

$$\omega_c = 2\pi f_c = \frac{2,405c}{a\sqrt{(\varepsilon_1 - \varepsilon_2)}}$$
 (12)

Для частот ниже граничной частоты отсечки $f < f_C$ система перестаёт быть волноводом, поле волны вытесняется из диэлектрического стержня и волна распространяется в окружающем пространстве.

Экспериментальный стенд

Схема измерительного стенда представлена на Рис.1. Излучение от генератора СВЧ колебаний Г4-82 *1* поступает по кабелю через коаксиальноволноводный преобразователь (КВП) в волноводный тракт *2*, затем, пройдя развязывающий волноводный ферритовый вентиль *3*, поступает в КВП *4* на другом конце тракта, у которого центральный проводник имеет продолжение в виде короткого 10-мм отрезка металлического стержня (антенны), который соединяется либо с проводящим (углеродным) стержнем-волноводом ПВ *5*, либо на него надевается стеклянная трубка-капилляр, заполненная жидкостью, например, водой. Конец стержня, возбуждающего поле в открытом волноводе, утоплен на 10 мм по отношению к краю внешней коаксиальной экранирующей

трубки диаметром 20 мм. Внешняя трубка ограничивает излучение антенны

в свободное пространство, способствуя возбуждению поля на открытом волноводе. Чтобы вызвать отражение ПВ E_0 на противоположный конец проводящего стержня волновода может быть надет металлический экран-диск *6*, который при небольшом затухании формирует стоячую волну. Волна может и просто отражаться от конца волновода.

Измерение распределения составляющей E_r напряженности электрического поля ПВ E_0 , распространяющейся по открытому волноводу проводилось с помощью зонда — емкостной антенны, представляющей собой короткий выступающий отрезок внутреннего проводника кабеля 7, направленный по радиусу исследуемого стержня. Для устранения искажений, вносимых в показания зонда паразитной поверхностной волной, возбуждающейся снаружи на экране зонда [3], на его фидер был надет конический радиопоглощающий элемент. Зонд, установленный на суппорте координатного устройства 8, приводимого в движение электродвигателем РД-09, перемещался параллельно

оси открытого волновода. Наведённый на зонд СВЧ сигнал поступал по кабелю в супергетеродинный приёмник 9, в качестве которого использовался анализатор спектра СК4-64 с преобразователем Я4С-64 и далее сигнал с выхода детектора, пропорциональный квадрату амплитуды, поступал на вход цифрового осциллографа TDS-2014 «Тектроникс» 10, записывающего сигнал в режиме линейной временной развертки, синхронизированной с движением координатного устройства.

Распространение волны E_0 по углеродным стержням

Распределение относительной величины сигнала $E_r^2(z)$ зонда по длине волновода представлено на рис.2 для проводника \emptyset 3мм (*a*) и углеродного

Рис.2 Распределение амлитуды сигнала ПВ на проводе (а) и графитовом стержне (b).

составного стержня (Ø 2,2 мм, длиной 35 см), соединённого из грифелей трёх графитовых карандашей *КОН-І-NOOR* с твёрдостью 9Н (*b*), ПВ по проводу распространяется практически без затухания на длине стержня (рис. 2*a*). Это видно по стоячей волне, отражённой от конца провода. Девиация амплитуды сигнала связана с кривизной проводника и изменением расстояния от него до кончика зонда при экспоненциальном распределении поля волны по радиусу.

Чтобы определить переход в режим прекращения распространения ПВ были проведены измерения $E_r^2(z)$ с грифелем из прессованного древесного угля (диаметром 4,2 мм, длиной 17 см) *Faber-Castel Germany PITT* средней

твёрдости (см.рис.3b) и стержня из обычного древесного угля (диаметром 6 мм,

длиной 20 см) (*c*). Рис.3*d* даёт сигнал, наведенный на зонд в отсутствие стержней. Для сравнения показан фрагмент распределения для стоячей ПВ (рис.3*a*).

Сравнение рис. За и Зв показывает, что В первом случае формируется затухающая стоячая поверхностная волна с периодом λ/2,. Во втором случае наблюдается затухание сигнала, близкое к апериодическому со слабым «всплеском» на второй «полуволне», что можно отнести за счет пришедшей назад слабой отражённой от конца стержня волны. В случае рис.3с, где наблюдается чисто экспоненциальное затухание амплитуды, отрицательный показатель экспоненты модулю ПО оказывается примерно в 1,5-2 раза больше, чем в случае рис.3b. Оценки по формуле (3) скин-слоя, т. е. глубины проникновения поля волны В углеродный материал стержня, строгой, правда, в одномерном приближении (6), показывают, что в графитовом стержне 9*H* скин-слой $\delta = _{0,37 \text{ мм}} < a = 1,1$ мм, тогда как в случае со стержнем из прессованного древесного угля (ПДУ)

 $\delta = 5_{\mathrm{MM}} > a = 2,1$ мм. Измерить сопротивление стержня из древесного угля

предела измерения в 1 МОм и трудности в обеспечении надежного контакта стержня с электродами. Однако, можно утверждать, что в последнем случае $\delta >> a$.

Сказанное позволяет сделать вывод о том, что распространение волны в среде с крайне низкой проводимостью становится объёмным с потерями.

Распространение волны E_0 по стеклянному капилляру с водой

Наполненная водой стеклянная трубка длиной 20 см, с внутренним диаметром 4,5 мм и толщиной стенки 1,5 мм, возбуждается КВП (рис.1) ОТ металлическим стержнем диаметром 2,7 мм, погруженным в трубку на 10 мм. Использовалась как дистиллированная вода с проводимостью ~ $10^{-5} (OM \cdot M)^{-1}$, так раствор поваренной соли (модель И морской воды) с проводимостью ~ 0,05 (Ом·м)⁻¹. Измерения распределения поля $E_{r}^{2}(z)$ трубки по длине С

дистиллированной в относительных единицах, проведенные для двух разных значений частоты СВЧ поля, представлены кривыми 4(*a,b*). Рис.4*a* характеризует поле, измеренное на частоте 7,5 ГГц снаружи внешней экранирующей трубки, при этом всплеск сигнала отмечается в окрестности возбуждающей антенны, и далее на всём протяжении трубки внешнее

электромагнитное поле практически отсутствует. Рис.4*b* показывает распределение поля по длине трубки, измеренное при тех же условиях, но уже на более низкой частоте - 5,5 ГГц. Видно, что во втором случае вблизи поверхности трубки сводой появляется пространственно модулированное электромагнитное поле $E_r^2(z)$, которое можно рассматривать как затухающую стоячую поверхностную волну. Рис.4*c* показывает качественно похожее распределение поля в тех же условиях, что и на рис.4*b*, но измеренное при заполнении трубки солёной водой. В солёной воде затухание амплитуды поля заметно больше, чем в дистиллированной воде.

Эффект появления поля на поверхности волновода при снижении частоты генератора, (ср. рис.4a и 4b), наиболее вероятно вызван отсечкой распространения волны E_0 по волноводу, представляющему собой водяной столб в стеклянной трубке, который в СВЧ диапазоне можно рассматривать как аналог оптоволокна. Вычисление частоты отсечки распространения волны по формуле (12) для водяного столба радиусом 0,22 см при относительной диэлектрической проницаемости столба воды $\mathcal{E}_1 = 81$, и проницаемости оболочки из стекла $\mathcal{E}_2 = 5$ дало значение $f_c = 5,85$ ГГц, которое оказалось в интервале между значениями частоты, выбранными для измерений распределения поля $E_r^2(z)$. Эффективное значение в действительности чуть меньше: $\mathcal{E}_{2 \rightarrow \varphi} \leq \mathcal{E}_{2}$, из-за того, что «провисание» поля волны в стеклянную оболочку практически не выходит за её границы и отсутствует в окружающем воздухе. Если посчитать среду воздушной и положить $\mathcal{E}_2 = 1$, то f_c примет значение - 5,7 ГГц, что качественно не изменит ненамного меньшее соотношения между частотами. При частотах $f < f_c$ оптический волновод уже не удовлетворяет условию полного внутреннего отражения для волны Е₀, и она становится вытекающей волной: см. рис.3 (b),(c). В пределе $f > f_c$ поле волны заключено внутри водяного столба и не регистрируется зондом: Puc3(a).

Вода – полярная жидкость с достаточно высокими релаксационными диэлектрическими потерями, тангенс угла потерь в воде, достигает в СВЧ

диапазоне значения $tg\delta \sim 0,1$. Соленая вода представляет собой электролит, в котором электроны находятся в связанном состоянии, и её проводимость, обусловлена движением положительных и отрицательных ионов в вязкой среде. Поляризация ионов электролита под действием переменного поля высокой частоты несколько усиливает потери, что подтверждается измерениями распределения поля, представленными Рис.3 (*c*). Характерно, что фазовое распределение поля стоячей волны по длине волновода остаётся без изменений.

Выводы

1. Стержень, обладающий электронной проводимостью, перестает служить волноводом для поверхностной электромагнитной волны E_0 , когда глубина скин-слоя в проводнике становится сравнимой с его радиусом: $\delta \sim a$.

2. Трубка, наполненная водой, перестает служить направляющей структурой для электромагнитной волны E_0 при значениях её частоты, меньшей $f < f_c$, определенной по действительной критической: составляющей диэлектрической проницаемости воды, при ЭТОМ величина мнимой $\mathcal{E}_1 tg\delta$ характеризующей составляющей продольное затухание распространяющейся волны на условие её отсечки заметного влияния не оказывает.

Литература

- 1. Семёнов Н.А. Техническая электродинамика. М.: Связь, 1973. 490С.
- 2. Зоммерфельд А. Электродинамика. М.: ИЛ, 1958. 702 С.
- 3. Сергейчев К.Ф., Лукина Н.А. Поверхностная волна Зоммерфельда в зондовых измерениях электромагнитных полей.// Приборы и техника эксперимента. 2009, №4, С.114-120.
- Hondros A., Debye P. Electromagnetic waves in dielectric waveguides. //Ann. Phys., 1910, V.32. P.465-476.
- 5. Маркузе Д. Оптические волноводы. М.: Мир. 1974. 576 С.
- 6. Фёдоров Н.Н. Основы электродинамики. М.: Высшая школа. 1980. 399 С.