"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 7, 2018

contents of issue      DOI  10.30898/1684-1719.2018.7.6     full text in Russian (pdf)  

Multibeam antennas for radar and communication systems


A. V. Shishlov 1,2, B. A. Levitan 1,2,3, S. A. Topchiev 1, V. R. Anpilogov 4, V. V. Denisenko 1,3

1 JSC «Radiofizika», Geroev Panfilovtsev str., 10, Moscow 125363, Russia

2 Moscow Institute of Physics and Technology,  Institutskiy lane, 9, Dolgoprudniy, Moscow region 141701, Russia

3 Moscow Aviation Institute,  Volokolamskoe highway, 4, Moscow 125993, Russia

4 JSC «VISAT-TEL», Shchukinskaya str., 6/3, Moscow 123182, Russia


 The paper is received on July 2, 2018, after correction - on July 20, 2018 19, 2018


Abstract. In this survey the state-of-the-art and trends of multibeam antenna (MBA) for radar and communication systems are considered. Architectures, principal features and applications of various MBAs are introduced and accompanied by practical examples. MBAs as assemblies of single-beam antennas are widely used in base stations of cellular communication. Though the antenna assemblies are bulky, their beams can be individually directed and optimized. Reflector MBAs have high directivity and are simple. Key points of reflector MBAs are limited field of view and low overlapping level of neighbor beams. State-of-the-art dual-reflector single-feed-per-beam (SFB) MBAs with one-dimensional sights of view have over one hundred beams in one plane. MBAs with two-dimensional sights of view have up to several dozen beams in cross-section. Good overlapping of beams is achieved by grouping several SFB reflector (or lens) MBAs with alternated beams. The other way of providing good overlapping is generating beams from single aperture by multiple-feed-per-beam (MFB). Antenna arrays with Rotman lens beamformers can have hundreds of fixed or frequency scanned beams. These MBAs have low losses, are simple, and compact. In active arrays, losses in beamformers do not decrease significantly antenna electrical performances. For this reason, compact printed microstrip beamformers or even integrated circuit (IC) beamformers having reach beamforming capabilities can be used in active arrays despite valuable losses. Active electronically scanned arrays (AESA) are capable to form several independent scanning beams. AESAs with digital beamforming are capable to form hundreds or thousands independent beams due to advanced digital ICs.

Keywords: multibeam antenna (MBA), multibeam reflector antenna, multibeam lens antenna, multibeam phased array antenna, multibeam array-fed reflector antenna.


1. Anpilogov V.R., Shishlov A.V., Eydus A.G. Multibeam antenna systems of high throughput geostationary communications satellites (HTS). Tekhnologii i sredstva sviazi [Communication technologies and facilities]. 2013, No. 6-2 (99), pp. 54 – 67. (In Russian)

2. Fujimoto K. Mobile antenna systems handbook. Third edition. 2008 Artech House, Inc., 2008, 769 p.

3. Design of Multibeam Antennas for the Commercial Stratospheric Communication System. Final Report of research project for ETRI, Project Manager Shishlov A., 2000, Moscow, JSC “Apex”, 147 p.

4. Sayeed A. AT&T debuts 5G channel sounder ‘Porcupine’ with NI | FierceWireless. University of Wisconsin–Madison, Wireless Communication and Sensing Lab. Available at https://dune.ece.wisc.edu/?p=1013

5. Huang K.Ch., Edwards D.J. Millimeter Wave Antennas for Gigabit Wireless Comunications. A John Wiley and Sons Ltd., 2008, 274 p.

6. Anpilogov V.R., Gritsenko A. OneWeb satellite multibeam service area analysis. Tekhnologii i sredstva sviazi. Spetsialniy vipusk “Sputnikovaya sviaz’ i veshchanie-2017” [Communication technologies and facilities. “Satellite communications and broadcasting-2017” special issue], pp. 78-86. (In Russian)

7. Biriukov V.L., Yefimova N.A., Kalinichev V.I., Kaloshin V.A., Pangonis L.I.. Study of the ultra-wideband ring antenna array. Zhurnal radioelektroniki [Journal of Radioelectronics], 2013, No.1. Available at http://jre.cplire.ru/jre/jan13/20/text.pdf (In Russian)

8. Somov A.M., Kabetov R.V. Proektirovanie antenno-fidernykh ustroystv [Design of antenna feeder devices]. Moscow, Goriachaya liniya – Telecom Publ. 2015. 500 p. (In Russian)

9. Kaloshin V.A. Reflector antenna. Russia Patent, No.2173496, 10.09.2001.

10. Krivosheev Yu.V., Shishlov A.V., Ganin S.A., Yom I.B., Uhm M.S., Yun S.H. Multiple feed per beam antenna based on disk-on-rod elements. Radiotekhnika [Radio engineering], 2016, No. 4, pp. 56-62. (In Russian)

11. Schneider M., Hartwanger C., Wolf H. Antennas for multiple spot beam satellites. Ceas Space Journal, December 2011, 2, pp.59-66 DOI: 10.1007/s12567-011-0012-z. Available at


12. Céline Leclerc, Maxime Romier, Hervé Aubert, and Ayoub Annabi.  Ka-Band Multiple Feed per Beam Focal Array Using Interleaved Couplers.  IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 6, June 2014, pp. 1322-1329.

13. Kaloshin V.A. Multi-beam Hybrid Antennas, Proceedings of the 13th International Crimean Conference “CriMiCo-2003: Microwaves & Telecommunication Technology”, Sevastopol, September 2003, pp.387-390. (In Russian)

14. Gurkin Ye.N., Kogan B.L. Two-reflector system for the antenna with a broad beamforming sector in one plane. Vestnik MGTU im. N.E. Baumana [Digest of N.E. Bauman Moscow State Technical University], 2009, Spetsialniy vypusk “Antenny i ustroystva radio- i opticheskogo diapazonov” [“Antennas and devices of radio and optical bands” special issue], pp.23-28. (In Russian)

15. Plastikov A.N. Proektirovanie mnogoluchevykh ofsetnykh dvukhzerkalnykh antenn s odnokoordinatnym i dvukhkoordinatnym skanirovaniem [Design of multibeam offset two-reflector antennas with one-coordinate and two-coordinate scanning]. PhD thesis in Engineering. Ìoscow, Moscow Power Engineering Institute. 2013. 186 p. (In Russian)

16. Kinber B.Ye., Classen V.I., Steblin V.I. Theory of three-dimensional bifocal antennas. Radiotekhnika i elektronika [Radio engineering and electronics], 1983, No.8, pp. 1509-1517. (In Russian)

17. Dragone C. Unique reflector arrangement with very wide field of view for multibeam antennas. Electronic Letters, 1983, vol. 19, No 25/26, pp. 1061-1062.

18. Kaloshin V.A., Frolova Ye.V. Characteristics of two-reflector axisymmetric aplanatic antennas. – Antenny [Antennas], No. 7 (110), 2006, pp. 45 – 51. (In Russian)

19. Kaloshin V.A., Frolova Ye.V. Characteristics of two-reflector offset aplanatic antennas. – Antenny [Antennas], No. 10 (137), 2008, pp. 9 – 13. (In Russian)

20. Venetskiy A.S., Kaloshin V.A. On Eikonal Aberrations in Axisymmetric Double_Reflector Telescopic Systems, Journal of Communications Technology and Electronics, 2016, Vol. 61, No. 4, pp. 385–394.

21. Shishlov A.V., Shubov A.G.. Efficiency of antennas with contoured radiation patterns. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic waves and electronic systems]. 1997, Vol. 2, No. 1, pp. 54-57. (In Russian)

22. Reutov A.S., Shishlov A.V. Features of step-by-step reflector synthesis for contoured beam reflector antennas using the spline representation of reflector surface. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic waves and electronic systems]. 2003, Vol. 8, No. 2, pp. 4-14. (In Russian)

23. Shishlov A.V. Reflector antennas with contoured beams – efficiency and limiting capability. Radiotekhnika [Radio engineering], 2006, No.4, pp.45-50. (In Russian)

24. Shishlov A.V. Theory and design of reflector antennas for radio systems with contoured service areas. Radiotekhnika [Radio engineering], 2007, No. 4, ñ. 39 – 49. (In Russian)

25. Vilenko I.L., Krivosheev Yu.V., Shishlov A.V., Yom I.B., Uhm M.S., Yun S.H. Dual-beam multi-reflector satellite-borne K/Ka-band communications antenna with direction-variable reconfigurable contoured beam. Antenny [Antennas], 2016, No. 10 (230), pp. 51-60. (In Russian)

26. Venetskiy A.S., Kaloshin V.A. Eikonal Distribution on the Surface of an Axisymmetric Dielectric Lens and Minimization of Aberrations. Journal of Communications Technology and Electronics, 2018, Vol. 63, No. 2, pp. 163–174.

27. Ruze J. Wide-Angle Metal-Plate Optics. Proceedings of the IRE, 1950, vol. 38, No. 1, pp.  53 – 59.

28. Egorov E. N. , Epshtein A. L. , Guskov G. Ya. , Levitan B. A. , Sbitnev G. V. , Shishlov A. V.  New Technologies in Multibeam and Scanning Antennas for Communication Systems. Proceedings of APSCC'94 Workshop, 1994, Seoul, Korea, pp. 211 - 221.

29. Tekhnologii radiolokatsii – k 55-letiyu PAO «Radiofizika» [Radiolocation technologies – for 55th anniversary of JSC ‘Radiofizika”]. 2nd edition, edited by Levitan B.A. Ìoscow, Veche Publ. 2015. 672 p. (In Russian)

30. Akhiyarov V.V., Kaloshin V.A., Nikitin Ye.A. Study of wideband planar Luneburg lenses. Zhurnal radioelektroniki [Journal of Radioelectronics], 2014, No.1. Available at http://jre.cplire.ru/jre/jan14/18/text.pdf (In Russian)

31. Yevstropov G.A. Electric Scanning Antennas. Antenny [Antennas], 2009, No. 7 (146), ñ. 30-34. (In Russian)

32. Shubov A.G., Denisenko V.V., Mayorov A.V., Shaliakin A.I., Shishlov A.V. Experience of Rotman lens design for different frequency bands. Antenny [Antennas], 2001, No. 6 (52), pp. 23-28. (In Russian)

33. Tekkouk K., Ettorre M., Coq L.L., Sauleau R. Multibeam SIW Slotted Waveguide Antenna System Fed by a Compact Dual-Layer Rotman Lens. IEEE Transactions on Antennas and Propagation, 2016, v. 64, No 2, pp. 504 – 514.

34. Kaloshin V.A., Frolova Ye.V. Synthesis and analysis of reflector-lens beamforming systems for planar multibeam antennas. Zhurnal radioelektroniki [Journal of Radioelectronics], 2015, ¹12. Available at http://jre.cplire.ru/jre/dec15/19/text.html (In Russian)

35. Venetskiy A.S., Kaloshin V.A., Nguyen K.T., Frolova Ye.V. Synthesis and study of the ultra-wideband planar three-reflector system. Zhurnal radioelektroniki [Journal of Radioelectronics], 2018, No.1. Available at http://jre.cplire.ru/jre/jan18/4/text.pdf,  DOI 10.30898/1684-1719-2018-1-5 (In Russian)

36. Kaloshin V.A., Ngiyem Kh.D., Frolova Ye.V. Synthesis and study of the ultra-wideband planar waveguide three-focal lens-reflector system with forced refraction. Zhurnal radioelektroniki [Journal of Radioelectronics], 2018, No.1. Available at http://jre.cplire.ru/jre/jan18/3/text.pdf,  DOI 10.30898/1684-1719-2018-1-4 (In Russian)

37. Kaloshin V.A., Le D.T., Frolova Ye.V. Planar bifocal slotted waveguide array. Doklady mezhdunarodnoy konferentsii «Radioelektronnye ustroystva i sistemy dlia infokommunikatsionnykh tekhnologiy» [Reports of the international conference “Radioelectronic devices and systems for infocommunication technologies”]. “Scientific conferences dedicated to the Radio Day” series. Issue 73. Moscow, A.S. Popov RSNTORES Publ. 2018. (In Russian)

38. Tolkachiov A.A., Yegorov Ye.N., Shishlov A.V. Some development trends of radiolocation and communication systems. Radiotekhnika [Radio engineering], 2006, No.4, pp. 5 – 11. (In Russian)

39. Rohwer A.B., Desrosiers D.H., Bach W., Estavillo H., Makridakis P., Hrusovsky R. Iridium Main Mission Antennas – A Phased Array Success Story and Mission Update. 2010 IEEE International Symposium on Phased Array Systems and Technology. pp. 504-511.

40. Metzen P.L. Globalstar Satellite Phased Array Antennas. 2000 IEEE International Symposium on Phased Array Systems and Technology. pp. 207-210.

41.Hong W., Jiang Z.H., Yu S., Zhou J., Chen P., Yu Z., Yang B., Pang X., Jiang M., Cheng Y., Al-Numaimi M.K.T., Zhang Y., Chen J., He S. Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Transactions on  Antennas and Propagations, 2017, vol. 65, No. 12, pp. 6231- 62-49.

42. Yegorov Ye.N., Sbitnev G.V., Chistiukhin V.V. Essays on solid state active phased array technology development within Zelenograd school of UHF microelectronics. Radiotekhnika [Radio engineering], No.4. 2010, pp. 6-13. (In Russian)

43. Herd J.S., Conway M.D. The Evolution to Modern Phased Array Architectures. Proceedings of the IEEE, 2016, Vol. 104, No. 3, pp. 519-529.

44. Voskresenskiy D.I., Ovchinnikova Ye.V., Shmachilin P.A., edited by Voskresenskiy D.I. Bortovye tsifrovye antennye reshetki i ikh elementy [On-board digital antenna arrays and their elements]. Ìoscow, Radiotekhnika Publ. 2013. (In Russian)

45. Ponomariov L.I., Vechtomov V.A., Miloserdov A.S., edited by Ponomariov L.I. Bortovye tsifrovye mnogoluchevye antennye reshetki dlia sistem sputnikovoy sviazi [On-board digital multibeam antenna arrays for satellite communication systems]. Moscow, N.E. Bauman Moscow St. Tech. Univ. Publ.. 2016. 197 p. (In Russian)

46. Brookner Eli. Advances and Breakthroughs in Radars and Phased Arrays. 2016 IEEE International Symposium on Phased Array Systems and Technology. pp. 1-8.

47. Fang R. J. F. Broadband IP Transmission over SPACEWAY® Satellite with On-Board Processing and Switching. Proceedings of IEEE Globecom Conference, 2011, 5 p.

48. Shishlov A.V., Krivosheev Yu.V., Melnichuk V.I. Features of contoured beams formed by phased array antennas. Antenny [Antennas], 2016, No. 8 (228), pp. 44 - 58. (In Russian)

49. Shishlov A.V., Krivosheev Yu.V., Melnichuk V.I. Principal Features of Contour Beam Phased Array Antennas. Available at 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), pp. 1-8.

50. Space Antenna Handbook. Editors: Imbriale V.A., Gao S., Boccia L., A John Willey & Sons, 2012.

51. Vilenko I.L., Krivosheev Yu.V., Shishlov A.V. Reflector Antennas fed by Active Phased Arrays. Antenny [Antennas], No. 10 (173), 2011, pp. 22 - 42. (In Russian)

52. Shishlov A.V., Vilenko I.L. Krivosheev Yu.V., Active Array Fed Reflector Antennas. Practical Relations and Efficiency. 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 2362 – 2366.

53. Shishlov A.V., Vilenko I.L., Krivosheev Yu.V., Asymptotic Theory, Design and Efficiency of Array Fed Reflector Antennas. 2013 IEEE International Symposium on Phased Array Systems and Technology, pp. 320 – 327.

54.Cooly M. Phased Array Fed Reflector (PAFR) Antenna Architectures for Space Based Sensors. 2015 IEEE Aerospace Conference, pp. 1-11.

55. Rebeiz G.M. Advances in SiGe BiCMOS Technology with Chip-Scale Phased Array Applications. 2013 Phased Array Symposium, Tutorial, Boston, pp. 1-90.

56. Rebeiz G.M. SiGe and CMOS for Advanced Phased Array Communication and Radar Systems. 2016 Phased Array Symposium, Tutorial, Boston, pp. 1-107.

57. Ku B.H., Schmalenberg P., Inac O., Gurbus O.D., Lee J.S., Shiozaki K., Rebeiz G.M. A 77-81-GHz 16-element Phased-Array Receiver With ±50° Beam Scanning for Advanced Automotive Radars. IEEE Transactions on Microwaqve Theory and Technique, 2014, vol. 62, No. 11, pp. 2823-2832.

58. Ku B.H., Inac O., Chang M., Rebeiz G.M. 75-85 GHz Flip-Chip Phased Array RFIC with Simultaneous 8-Transmit and 8-Receive Paths for Automotive Radar Applications. 2013 IEEE Radio Frequency Integrated Circuits Symposium. pp. 371-374.

59. Zihir S., Gurbus O.D., Kar-Roy A., Raman S., Rebeiz G.M. 60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques. IEEE Transactions on Microwave Theory and Techniques, 2016, Vol. 64, No. 12, pp. 4701 – 4719.

60. Anokiwave Introduces 26 GHz 5G mmWave Reconfigurable 256-Element Active Antenna Array. Microwave Journal, February 1, 2018. Available at http://www.microwavejournal.com/articles/29738

61. Anokiwave Introduces First 39 GHz Silicon 5G Active Antenna ICs. Microwave Journal, May 16, 2017. Available at http://www.microwavejournal.com/articles/28378

62. SatixFy UK Introduces Silicon Based ESMA Antenna. Microwave Journal, March 15, 2018. Available at http://www.microwavejournal.com/articles/29983

63. Solution: A new class of satellite terminal. Isotropic Systems, April 14, 2017. Available at https://www.isotropicsystems.com/solution/


For citation:
A. V. Shishlov, B. A. Levitan, S. A. Topchiev, V. R. Anpilogov, V. V. Denisenko. Multibeam antennas for radar and communication systems. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 7. Available at http://jre.cplire.ru/jre/jul18/6/text.pdf

DOI  10.30898/1684-1719.2018.7.6