"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 7, 2018

contents of issue      DOI  10.30898/1684-1719.2018.7.8     full text in Russian (pdf)  

INVESTIGATION OF STRUCTURE AND PHYSICAL PROPERTIES  OF ALLOYS FROM THE Fe-Ni-Co-Al FAMILY

 

V.V. Koledov1, E.T. Dilmieva1, V.S. Kalashnikov1, A.P. Kamantsev1, A.V. Mashirov1,

S.V. von Gratowski1, V.G. Shavrov1, Yu.S. Koshkid’ko1,2, A.V. Koshelev3, S.V. Taskaev4,

V. Sampath5, I.I. Musabirov6, F.V. Chung7, R.M. Grechishkin8

 

1 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

2 Institute of Low Temperature and Structural Research of PAN, Wroclaw 50-422, Poland

3 Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia

4 Chelyabinsk State University, Br. Kashirinykh 129, Chelyabinsk 454001, Russia

5 Indian Institute of Technology Madras, Chennai 600036, India

6 Institute for Metals Superplasticity Problems of Russian Academy of Sciences, Stepan Khalturin 39, Ufa 450001, Russia

7 Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny, Moscow Region 141701, Russia

8 Tver State University, Zhelyabova 33, Tver 170100, Russia

 

 The paper is received on May 31, 2018, after correction - on July 18, 2018

 

Abstract. Recently, it has been proved that the addition of Ta and B as quinary elements to the quaternary Fe-Ni-Co-Al alloy alters the thermoelastic martensitic transformation and also leads to "giant" superelasticity of up to 13.5% in the Fe40.95Ni28Co17Al11.5Ta2.5B0.05 alloy. This is significantly larger than the best binary Ti-Ni shape memory alloy. In addition, the iron-based shape memory alloy is 50% stronger than titanium nickelide (YS =1 GPa). The ingots of alloys of Fe-Ni-Co-Al and Fe-Ni-Co-Al-Ta-B were produced by induction melting/ arc melting technique followed by homogenization annealing and quenching. Then the alloy ingots cut by electro-discharge machining were further subjected to rolling.  The crystal structure (by XRD) and thermomechanical and magnetic properties were studied. The alloy exhibits superelasticity at a temperature lower than 330 K. While measuring the temperature dependence of magnetization, a behavior that is typical of ferromagnets was observed. With a decrease in temperature from 335 K to 4 K, this behavior is replaced by ambiguous hysteresis behavior. The data obtained can be explained by a combination of states of the spin and strain-glass. Studies of iron-containing alloys should be continued since strong superelasticity is of great interest for the construction of superstructures that are resistant to extreme loads.

Keywords: phase transition, shape memory effect, superelasticity, strain glass, spin glass, Fe-Ni-Co-Al-Ta-B, superstructures.

References

1. Y. Tanaka Y. Himuro, R. Kainuma, Y. Sutou, K. Ishida. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science. V. 327, 2010. P. 1488.

2. Omori, T., Abe, S., Tanaka, Y., Lee, D. Y., Ishida, K., Kainuma, R. Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scripta Mater. V. 69, ¹ 11, 2013. P. 812-815.

3. J. Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo, Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Materialia. V.61, ¹ 9, 2013. P. 3445-3455.

4. J. Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo, Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Materialia. V. 61. ¹ 9, 2013. P. 3445-3455.

5. A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov. Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy. Scripta Materialia. V. 67, ¹ 5, P. 475-478.

6. Krooß, P., Somsen, C., Niendorf, T., Schaper, M., Karaman, I., Chumlyakov, Y., Maier, H. J. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals.  Acta Materialia. V. 79. 2014. P. 126-137.

7. Chumlyakov, Y. I., Kireeva, I. V., Poklonov, V. V., Pobedennaya, Z. V., & Karaman, I. The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi. Technical physics Letters. V. 40, ¹ 9. 2014. P. 747-750.

8. Tseng, L. W., Ma, J., Karaman, I., Wang, S. J., & Chumlyakov, Y. I. Superelastic response of the FeNiCoAlTi single crystals under tension and compression.  Scripta Materialia. V. 101. 2015. P. 1-4.

9. Chumlyakov, Y. I., Kireeva, I. V., Kutz, O. A., Turabi, A. S., Karaca, H. E., & Karaman, I. Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals.  Scripta Materialia. V. 119, 2016. P. 43-46.

10. Lee, D., Omori, T., Kainuma, R. Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy.  Journal of Alloys and Compounds, V. 617, 2014. P. 120-123.

11. Omori, T., Ando, K., Okano, M., Xu, X., Tanaka, Y., Ohnuma, I., Ishida, K. Superelastic effect in polycrystalline ferrous alloys.  Science. V. 333(6038), 2011. P. 68-71.

12. Omori, T., Okano, M., & Kainuma, R. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire.  APL Materials. V. 1, ¹ 3, 2013. P. 032103.

13. Tseng, L. W., Ma, J., Hornbuckle, B. C., Karaman, I., Thompson, G. B., Luo, Z. P., & Chumlyakov, Y. I. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Materialia. V. 97, 2015. P. 234-244.

14. Vollmer, M., Segel, C., Krooß, P., Günther, J., Tseng, L. W., Karaman, I., Niendorf, T. On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys.  Scripta Materialia. V. 108, 2015. P. 23-26.

15. Vollmer, M., Krooß, P., Kriegel, M. J., Klemm, V., Somsen, C., Ozcan, H., Niendorf, T. Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—The role of grain orientation.  Scripta Materialia. V. 114, 2016. P. 156-160.

16. Tseng, L. W., Ma, J., Wang, S. J., Karaman, I., Chumlyakov, Y. I. Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals.  Scripta Materialia. V. 116, 2016. P. 147-151.

17. Tseng, L. W., Ma, J., Vollmer, M., Krooß, P., Niendorf, T., Karaman, I. Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy.  Scripta Materialia. V. 125, 2016. P. 68-72.

18. Bruno, N. M., Wang, S., Karaman, I., Chumlyakov, Y. I. Reversible martensitic transformation under low magnetic fields in magnetic shape memory alloys. Scientific reports. V. 7, 2017. P. 40434.

19. Ozbulut, O. E., Hurlebaus, S., Desroches, R. Seismic response control using shape memory alloys: a review. Journal of Intelligent Material Systems and Structures. V. 22, ¹ 14, 2011. P. 1531-1549.

20. Nzabonimpa, J.D., Hong, W.-K., Park, S.-C. Experimental investigation of dry mechanical beam–column joints for precast concrete based frame.  Structural Design of Tall and Special Buildings. V. 26, ¹ 1, 2017. P. e1302.

21. Dos Santos, F.A., Bedon, C. Preliminary experimental and finite-element numerical assessment of the structural performance of SMA-reinforced GFRP systems.  American Journal of Engineering and Applied Sciences. V. 9, ¹ 3, 2016. P. 692-701.

22. Bhowmick, S., Mishra, S.K. FNCATB Superelastic damper for seismic vibration mitigation. Journal of Intelligent Material Systems and Structures. V. 27, ¹ 15, 2016. P. 2062-2077.

23. Bedon, C., Amarante dos Santos, F. Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panels.  Advanced Engineering Materials. V. 18, ¹ 8, 2016, P. 1478-1493.

24. Omori, T., Iwaizako, H., Kainuma, R. Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Materials and Design. V. 101, 2016. P. 263-269.

25. Nikulin, I., Sawaguchi, T., Kushibe, A., Inoue, Y., Otsuka, H., Tsuzaki, K. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy. International Journal of Fatigue. V. 88, 2016. P. 132-141.

26. Shahverdi, M., Czaderski, C., Annen, P., Motavalli, M. Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer.  Engineering Structures. V. 117, 2016. P. 263-273.

27. Gao, N., Jeon, J.-S., Hodgson, D.E., Desroches, R. An innovative seismic bracing system based on a superelastic shape memory alloy ring.  Smart Materials and Structures. V. 25, ¹ 5, 2016, P. 055030.

28. Hu, J.W., Cho, Y.-I. Pilot Study for Investigating the Cyclic Response of the Recentering Bridge Bearing System Combined with the Friction Damper.  Advances in Materials Science and Engineering. 2016, P.  3701292.

29. Treadway, J., Abolmaali, A., Lu, F., Aswath, P. Tensile and fatigue behavior of superelastic shape memory rods.  Materials and Design. V. 86, 2015. P. 105-113.

30. V. V. Stolyarov, E. A. Prokof’ev, S. D. Prokoshkin, S. B. Dobatkin, I. B. Trubitsyna, I. Yu. Khmelevskaya, V. G. Pushin, and R. Z. Valiev.  Structural Features, Mechanical Properties, and the Shape-Memory Effect in TiNi Alloys Subjected to Equal-Channel Angular Pressing. The Physics of Metals and Metallography. Vol. 100, No. 6, pp. 608-618.

31. Cherechukin A.A., et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy.  Phys. Lett. A, V. 291, ¹ 2, 2001. P. 175.

32. Y. Tanaka et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science. V.  327, 2010. P. 1488.

33. Bhowmick, S., Mishra, S. K. FNCATB Superelastic damper for seismic vibration mitigation.  J. Intel. Mat. Syst. Str. V. 27, ¹ 15, 2016. P. 2062.

34. Omori, T., Ando, K., Okano, M., Xu, X., Tanaka, Y., Ohnuma, I.. Superelastic effect in polycrystalline ferrous alloys. Science. V. 333 (6038), 2011. P. 68-71.

35. Omori, T., Abe, S., Tanaka, Y., Lee, D. Y., Ishida, K., and Kainuma, R.. Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy.  Scripta Mater. V. 69, ¹ 11. 2013. P. 812-815.

36. Lee, D., Omori, T., and Kainuma, R. Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy.  J. Alloy. Compd. V. 617, 2014. P. 120-123.

37. Tanaka, Y., Kainuma, R., Omori, T., Ishida, K. Alloy Design for Fe-Ni-Co-Al-based Superelastic Alloys.  Materials Today: Proceedings. V. 2, 2015. P. S485-S492.

38. Gurau, G., Gurau, C., Sampath, V., Bujoreanu, L. G. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation.  Int. J. Miner. Metall. Mater. V. 23, ¹ 11, 2016. P. 1315-1322.

39. Zakharov, D., Lebedev, G., Koledov, V., Lega, P., Kuchin, D., Irzhak, A., Afonina, V., Perov, E., Shelyakov, A., Pushin, V. and Shavrov, V. An enhanced composite scheme of shape memory actuator for smart systems.  Physics Procedia V. 10, 2010. P.58-64.

40. Kalimullina, E., Kamantsev, A., Koledov, V., Shavrov, V., Nizhankovskii, V., Irzhak, A., Albertini, F., Fabbrici, S., Ranzieri, P. and Ari‐Gur, P. Magnetic shape memory microactuator.  Physica status solidi (c) V. 11(5‐6), 2014. P.1023-1025.

41. Irzhak, A., Koledov, V., Zakharov, D., Lebedev, G., Mashirov, A., Afonina, V., Akatyeva, K., Kalashnikov, V., Sitnikov, N., Tabachkova, N. and Shelyakov, A.. Development of laminated nanocomposites on the bases of magnetic and non-magnetic shape memory alloys: Towards new tools for nanotechnology.  Journal of Alloys and Compounds. V. 586, 2014. P. 464-S468.

42. Kamantsev, A., Koledov, V., Dilmieva, E., Mashirov, A., Shavrov, V., Cwik, J., Tereshina, I., Khovaylo, V., Lyange, M., Gonzalez-Legarreta, L. and Hernando, B. Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOe.  EPJ Web of Conferences V. 75, 2014. P. 04008.

43. Kamantsev, A.P., Koledov, V.V., Mashirov, A.V., Dilmieva, E.T., Shavrov, V.G., Cwik, J., Los, A.S., Nizhankovskii, V.I., Rogacki, K., Tereshina, I.S. and Koshkid'ko, Y.S. Magnetocaloric and thermomagnetic properties of Ni2. 18Mn0. 82Ga Heusler alloy in high magnetic fields up to 140 kOe.  Journal of Applied Physics V. 117(16), 2015. P.163903.

 

For citation:
V.V. Koledov, E.T. Dilmieva, V.S. Kalashnikov, A.P. Kamantsev, A.V. Mashirov, S.V. von Gratowski, V.G. Shavrov, Yu.S. Koshkid’ko, A.V. Koshelev, S.V. Taskaev, V. Sampath, I.I. Musabirov, F.V. Chung, R.M. Grechishkin. Investigation of structure and physical properties of alloys from the Fe-Ni-Co-Al family. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 7. Available at http://jre.cplire.ru/jre/jul18/8/text.pdf

DOI  10.30898/1684-1719.2018.7.8