ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2020. № 7
Оглавление выпуска

Текст статьи (pdf)

English page

 

DOI  https://doi.org/10.30898/1684-1719.2020.7.4

УДК 537.86, 537.9, 537.622, 537.226.1

 

Исследование электродинамических параметров композитных материалов на основе природного Fe3O4

 

А. И. Горячко, C. Н Иванин, В. Ю. Бузько

Кубанский государственный университет, 350040, Краснодар, ул. Ставропольская, 149

 

Статья поступила в редакцию 22 июня 2020 г.

 

Аннотация. Проведено исследование структурных характеристик микропорошка магнетита методом рентгенофазового анализа и растровой электронной микроскопии. Определен параметр кристаллической решетки, методоми Шеррера и Вильямсона-Холла рассчитаны средние размеры областей когерентного рассеяния и значение микронапряжений. Измерено удельное электрическое сопротивление на постоянном токе для микропорошка Fe3O4 (ρ=0.026 Ом×м). На основе магнетита изготовлены композитные образцы с различной степенью концентрации по массе (50%, 60%, 70%, 80%, 90%) и на векторном анализаторе цепей в режиме линии передачи измерены S-параметры, на основании которых рассчитаны электродинамические параметры (магнитная и диэлектрическая проницаемость), а также рассчитаны значения плотностей для изготовленных композитных материалов.

Ключевые слова: магнетит, ферримагнетик, композитные материалы, микроструктура, электродинамические параметры.

Abstract. The structural characteristics of magnetite micropowder were studied by X-ray phase analysis and scanning electron microscopy. The lattice parameter is determined, and the average sizes of coherent scattering regions and the value of microstrain are calculated by the Scherrer equation and Williamson-Hall plot methods. The direct-current resistivity was measured for Fe3O4 micropowder (ρ = 0.026 Ohm×m). Composite materials were fabricated based on magnetite with various degrees of concentration by weight (50%, 60%, 70%, 80%, 90%). S-parameters were measured in the transmission line mode on a vector network analyzer. Electrodynamic parameters (magnetic and dielectric constant) and densities were calculated for the fabricated composite materials.

Key words: magnetite, ferrimagnetic, composite materials, microstructure, electrodynamic parameters.

Литература

1.     Blaney L. Magnetite (Fe3O4): Properties, Synthesis, and Applications. Lehigh Review. 2007. No.5. P.33-71.

2.     Parkinson G. S. Iron oxide surfaces. Surface Science Reports. 2016.  Vol.71. No.1. P.272-365. https://doi.org/10.1016/j.mineng.2012.03.030

3.     Iwauchi, K., Kita, Y., Koizumi, N. Magnetic and Dielectric Properties of Fe3O4. Journal of the Physical Society of Japan. 1980. Vol.49. No.4. P.1328-1335. https://doi.org/10.1143/JPSJ.49.1328

4.     Hameed A., Mushtaq H. M., Hussain M. Magnetite (Fe3O4) - Synthesis, Functionalization and its Application. International Journal of Food and Allied Sciences. 2017. Vol.3 No.2. P.64-75.

5.     Fahlepy M. R., Tiwow V. A., Subaer. Characterization of magnetite (Fe3O4) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application. Journal of Physics: Conference Series. 2018. Vol.997. P.1-7. https://doi.org/10.1088/1742-6596/997/1/012036

6.     Liang X. Xu H., Chen J., Sun J., Yang Y., Liu X. Research of mica/Fe3O4 pearlescent pigment by co-precipitation. Glass Physics and Chemistry. 2011. Vol.37. No.3. P.330-342. https://doi.org/10.1134/S1087659611030084

7.     Mufti N., Atma T., Fuad A., Sutadji, E. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand. 3rd International Conference on Theoretical and Applied Physics. October 11 2014

https://doi.org/10.1063/1.4897129

8.     Aredes S., Klein B., Pawlik M. The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production. 2012.  Vol.29-30. P.208-213. https://doi.org/10.1016/j.jclepro.2012.01.029

9.     He H., Zhong Y., Liang X., Tan W., Zhu J., Yan Wang C. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant. Scientific Reports. 2015. Vol.5. No.1. P.1-10. https://doi.org/10.1038/srep10139

10.  Lou Z., Han H., Mao D., Jiang Y., Song, J. Qualitative and Quantitative Detection of PrPSc Based on the Controlled Release Property of Magnetic Microspheres Using Surface Plasmon Resonance (SPR). Nanomaterials. 2018.  Vol.8. No.2. 107. P.1-10. https://doi.org/10.3390/nano8020107

11.  Stephen Z. R., Kievit F. M., Zhang, M. Magnetite nanoparticles for medical MR imaging. Materials Today. 2011. Vol.14. No.7-8. P.330-338. https://doi.org/10.1016/S1369-7021(11)70163-8

12.  Tsai T.-H., Kuo L.-S., Chen P.-H., Lee D., Yang, C.-T. Applications of Ferro-Nanofluid on a Micro-Transformer. Sensors. 2010. Vol.10. No.9. P.8161-8172. https://doi.org/10.3390/s100908161

13.  Tahmasebipour M., Paknahad A. A. Unidirectional and bidirectional valveless electromagnetic micropump with PDMS-Fe3O4 nanocomposite magnetic membrane. Journal of Micromechanics and Microengineering. 2019. Vol.29. No7. P. 075014 (12pp). https://doi.org/10.1088/1361-6439/ab1dbe

14.  Kong I., Ahmad, S. Abdullah, M. Hui, D., Nazlim Yusoff A., Puryanti D. Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials. 2010.  Vol.322. No.21. P.3401-3409. https://doi.org/10.1016/j.jmmm.2010.06.036

15.  Ni S., Lin S., Pan Q., Yang F., Huang K., He D. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. Journal of Physics D: Applied Physics. 2009. Vol.42. No.5. P.055004(5 pp.). https://doi.org/10.1088/0022-3727/42/5/055004

16.  Ilyas S., Tahir D., Suarni Abdullah B., Fatimah S. Structural and bonding properties of honeycomb structure of composite nanoparticles Fe3O4 and activated carbon. Journal of Physics: Conference Series. 2019. Vol.1317. No.1. 012058. https://doi.org/10.1088/1742-6596/1317/1/012058

17.  Сайт компании Inoxia Ltd [Электронный ресурс]. (10.11.2019). URL: https://www.inoxia.co.uk/products/chemicals/inorganic-compounds/magnetite-powder

18.  Potapova E., Yang X., Westerstrand M., Grahn M., Holmgren A., Hedlund, J. Interfacial properties of natural magnetite particles compared with their synthetic analogue. Minerals Engineering. 2012.  Vol.36-38. P.187-194. DOI:

https://doi.org/10.1016/j.mineng.2012.03.030

19.  Mishra A., Mohanty T. One step synthesis of Fe3O4/GO nanocomposites at 100°C and its magnetic properties. Integrated Ferroelectrics. 2017. Vol.184. No.1. P.178-185. https://doi.org/10.1080/10584587.2017.1368648

20.  Chaki S. H., Malek T. J., Chaudhary M. D., Tailor J. P., Deshpande M. P. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015. Vol.6. No.3. P.035009 (6pp). https://doi.org/0.1088/2043-6262/6/3/035009

21.  Nicolson A. M., Ross G. F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Transactions on Instrumentation and Measurement. 1970. Vol.19. No.4. P.377-382.

https://doi.org/10.1109/TIM.1970.4313932

22.  Chen L.F., Ong C.K., Neo C.P., et al. Microwave Electronics: Measurement and Materials Characterization. N-Y, Wiley, 2005. 552 p.

23.  Иванин С.Н., Бузько В.Ю., Горячко А.И., Панюшкин В.Т. Электромагнитные характеристики гетеролигандных комплексов стеарата гадолиния. Журнал физической химии. 2020. №8. С.1222-1227. https://doi.org/10.31857/S0044453720080130

24.  Ghigna T., Zannoni M., Jones M.E., Simonetto A. Permittivity and permeability of epoxy–magnetite powder composites at microwave frequencies. J. Appl. Phys. 2020. Vol.127. P.045102(7pp.). https://doi.org/10.1063/1.5128519

 

Для цитирования:

Горячко А.И., Иванин С.Н., Бузько В.Ю. Исследование электродинамических параметров композитных материалов на основе природного Fe3O4. Журнал радиоэлектроники [электронный журнал]. 2020. №7. https://doi.org/10.30898/1684-1719.2020.7.4