Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 7
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.7.6

UDC 537.874; 537.624

 

APPLICATION OF INDEPENDENT-CHANNEL METHOD FOR INVESTIGATION OF ELECTRICAL CONDUCTIVITY OF GRAPHENE-CONTAINING SHUNGITE

distribution

 

I. V. Antonets 1, E. A. Golubev 2, V. G. Shavrov3 , V. I. Shcheglov 3

Syktyvkar State University, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

2 Geology Institute Komy SC UrD RAS, Pervomaiskaya 54, Syktyvkar 167982, Russia

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

 

The paper was received on July 6, 2021

 

Abstract. The independent channel method which is intended for the calculation of specific electrical conductivity of graphene-contained shungite is proposed and realized on practice. It is noted that the most important of shungite application is the creation of screen hawing large area which are able to block electromagnetic radiation in wide frequency range. The most important factor which determines the blocking properties of shungite is the specific electrical conductivity of its carbon part which is determined by the spatial distribution of carbon atoms. As a main method of carbon structure investigation is mentioned the high-resolution raster electron microscopy which allows from the surface of specimen to receive the card of distribution of graphene slides and graphene packets. The spatial factor which determines the shungite conductivity is large anisotropy of single graphene slide which reaches three orders and more in the cases along and across the slide. The proposed method independent channels takes into consideration the arbitrary orientation of graphene packets relatively to direction of current flow. As a basis of method is employing the card of carbon spatial distribution which is received by raster electron microscopy method. The card is divided by parallel channels which transverse dimension is near or slightly exceeds the typical dimension of graphene packet. The channels are divided to square blocks which sides are equal to width of channel. The whole resistance of channel is formed by the successive connection of individual resistances of blocks. The resistance of whole card is determined by parallel connection of channels or averaging of resistance of all channels and following filling the whole area of card. The first step of analysis is the determination of advantage orientation of slides inside of every blocks. On the basis of determined orientation the block is filled by periodic structure which period is equal to the width of graphene slide and neighbouring interval. As a parameter which determines the orientation is used the angle between advantage orientation of graphene slides and axis of current flow between contacts. Owing to symmetry of task in comparison of current direction the limited meanings of corner is 0 and 90 degree. It is established two principal different cases of orientation: first – when determining angle is less than 45 degree and second when this angle is more than 45 degree. In the first case the current flows along the stripe with large conductivity. In the second case the current flows across these stripes so as through the stripes with low conductivity. It is found the smooth dependence of block resistivity from the angle of strip orientation. For the characteristic of area which is filled graphene slides it is proposed the coefficient of filling which is determined by binary discretization method. On the basis of analysis of slides orientation and filling coefficients are calculated the resistance of individual blocks. The resistances of all channels of investigated card are proposed. By using two methods – parallel connection and averaging over all channels it is calculated the specific electrical resistance and specific electrical conductivity of material as a whole. It is found that the received values of specific conductivity exceed the determined in experiment value in several (to 10) times. For the coordination of calculated value with experimental value it is made the variation of specific resistances of graphene slides and intervals between its. It id found that the calculation by method of parallel connection of channels ensures several better coordination than method of averaging. It is shown that the resistance is improved in the first turn by the increasing the resistance of interval between slides. In the quality of possible reason of decisive role of interval it is proposed the observed in experiment sharp non-homogeneity of relative arrangement of graphene slides. It is discussed the possible courses of further development of work. As a most important task it is proposed the more circumstantial determination of statistical character of received results.

Key words: carbon, shungite, electro-conductivity.

References

1. Lutsev L.V., Nikolaichuk G.A., Petrov V.V., Yakovlev S.V. Multipurpose radio-absorbing materials on the basis of magnetic nanostructure: obtaining, properties, application]. Nano-tehnika [Nano-engineering]. 2008. No.10. P.37-43. (In Russian)

2. Kazantseva N.E., Ryvkina N.G., Chmutin I.A. Promising materials for microwave absorbers. Journal of Communications Technology and Electronics. 2003. Vol.48. Np.2. P.173-184.

3. Ostrovsky O.S., Odarenko E.N., Shmatko A.A. Protective screens and absorbers of electromagnetic waves. Fizicheskaya injeneriya poverhnosti [Physical Engineering of Surface]. 2003. Vol.1. No.2. P.161-172. (In Russian)

4. Antonov A.S., Panina L.V., Sarichev A.K.  High-frequency magnetic permeability of composite materials containing the carbon-iron. Technical Physics. The Russian Journal of Applied Physics. 1989. Vol.59. No.6. P.88-94. (In Russian)

5. Vinogradov A.P. Elektrodinamika kompozitnykh materialov  [Electrodynamics of composite materials]. Moscow, URSS Publ. 2001. (In Russian)

6. Vendik I.B., Vendik O.G. Meta-materials ant its application in microwave engineering. Technical Physics. The Russian Journal of Applied Physics. 2013. Vol.83. No.1. P.3-28. (In Russian)

7. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000. Vol.84. No.18. P.4184-4187. 

8. Pendry J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000. Vol.85. No.18. P.3966-3969. 

9. Haliullin D.Ya. Elektrodinamicheskiye svoystva tonkikh bianizotropnykh sloyev. [Electrodynamic properties of thin bi-anizotropy layers]. PhD thesis. Sankt-Petersburg. 1998. (In Russian)

10. Oksanen M.I., Tretyakov S.A., Lindell I.V. Vector circuit theory for isotropic and chiral slabs. J. of Electromagnetic Waves and Applications. 1990. Vol.4. No.7. P.613-643.

11. Haliullin D.Ya., Tretyakov S.A. Generalized boundary conditions if impedance type for thin flat layers of different media (review). Journal of Communications Technology and Electronics. 1998. Vol.43. No.1. P.16.  

12. Oksanen M.I., Hanninen J., Tretyakov S.A. Vector circuit method for calculating reflection and transmission of electromagnetic waves in multilayered chiral structures. IEEE Proceedings. H. 1991. Vol.138. No.7. P.513-520.

13. Tretyakov S.A. Electrodynamics of composite media: khiral, bi-izotropic and some bi-anizotropic materials (review). Journal of Communications Technology and Electronics. 1994. Vol.39. No.10. P.1457.  

14. Dmitriev A.V. Scientific foundations of elaboration of methods for lowering specific electrical resistance of graphite containing electrodes. Chelyabinsk: ChSPU. 2005. (In Russian).

15. Rodionov V.V. Mehanizmi vzaimodeystviya SVCh izluchenia s nanostrukturirovannimi uglerodsodershashchimi materialami. [The mechanisms of interaction of VHF-radiation with nanostructused carbon-contained materials]. // Master-thesis. Kursk. 2014. (In Russian).  

16. Moshnikov I.A., Kovalevsky V.V., Lazareva T.N., Petrov A.V. Ispolzovanie shungitovih porod v sozdanii padioekraniruyushchih kompozitsionnih materialov. [The shungite rocks employment in creation of radio-screening composite materials]. // Materials of conference “Geodynamics, magmatizm, sedimentogenes and minerageniya of north-west of Russia”. Petrozavodsk: Geilogical institute of KarSC RAS. 2007. P.272-274. (In Russian). 

17. Linkov L.M., Makhmud M.Sh., Kryshtopova E.A. The electromagnetic radiation screens on basis of powder-like shungite. Bulletin of Polotsk State Uuniversity. Series C. Main sciences. Novopolotsk, Polotsk State University. 2012. No.4. P.103-108. (In Russian)

18. Linkov L.M., Borbotko T.V., Kryshtopova E.A. The radio-absorption properties of nickel-containing powdery shungite. Technical Physics Letters. 2009. V.35. ¹9. P.44-48. (In Russian).

19. Linkov L.M., Borbotko T.V., Kryshtopova E.A. Microwave and optic properties of multi-functional screens of electromagnetic radiation on the basis of powder-like shungite. Book of papers of 4-th international conference “Modern methods and technologies of creation and processing of materials”. Belarus. Minsk. 2009. P.23-25.

20. Borisov P.A. Karelskie shungite. [Karelian shungites]. Petrozavodsk, Karelia. 1956. (In Russian)

21. Philippov M.M. Shungiteonosnie porodi onegskoi struktury. [Shungite-containing rocks of Onega structure]. Petrozavodsk, Karelian SC RAS. 2002. (In Russian)

22. Sokolov V.A., Kalinin Yu.K., Gukkiev E.F. Shungity – novoye uglerodistoye sirye [Shungites – new carbon raw material]. Petrozavodsk, Karelia Publ. 1984. 176 p. (In Russian)

23. Philippov M.M., Medvedev P.P., Romashkin A.E. About nature of South Karelia shungites.  Litologia i poleznie iskopaemie  [Lithology and useful minerals]. 1998. No.3. P.323-332. (In Russian)

24. Melezhik V.A., Filippov M.M., Romashkin A.E. A giant paleoproterozoic deposit of shungite in NW Russia. Ore Geology Reviews. 2004. Vol.24. P.135-154.

25. Emelyanov S.G., Kuzmenko A.P., Rodionov V.V., Dobromyslov M.B. Mechanisms of microwave absorption in carbon compounds from shungite.  Journal of Nano- and Electronic Physics. 2013. Vol.5. No.4. P.04023-1 04023-3.

26. Kuzmenko A.P., Rodionov V.V., Kharseev V.A. Hyperfullerene carbon nane structures as a powder fill for absorption of microwave radiation. // Nano-technology. 2013. ¹4. P.35-36. (In Russian).   

27. Kuzmenko A.P., Rodionov V.V., Emelyanov S.G., Chervyakov L.M., Dobromyslov M.B. Microwave properties of carbon nanotubes grown by pyrolysis of ethanol on nickel catalyst. // Journal of Nano- and Electronic Physics. 2014. V.6. ¹3. P.03037-1 03037-2.

28. Boiprav O.V., Ayad H.A.E., Lynkov L.M. Radioshielding properties of nickel-containing activated carbon. // Technical Physics Letters. 2019. V.45. ¹12. P.635-637.

29. Savenkov G.G., Morozov V.A., Ukraintseva T.V., Kats V.M., Zegrya G.G., Ilyushin M.A. The effect of shungite additives on electric discharge in ammonium perchlorate. Technical Physics Letters. 2019. Vol.45. No.19. P.1001-1003.

30. Golubev Ye.A., Antonets I.V., Shcheglov V.I. Model presentation of microstructure, electroconductivity and microwave properties of shungite. Syktivkar: SyktSU. 2017. (In Russian).  

31. Golubev Ye.A., Antonets I.V., Shcheglov V.I. Static and dynamic conductivity of nanostructured carbonaceous shungite geomaterials. Materials Chemistry and Physics. 2019. Vol.226. No.3. P.195-203. 

32. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic microwave conductivity of graphene-based shungite. Technical Physics Letters. 2018. Vol.44. No.5. P.371-373. 

33. ntonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The investigation of conductivity of graphene-containing shungite by waveguide method. Book of papers of International Symposium «Perspektivnyye materialy i tekhnologi» [Perspective materials and technologies]. Vitsebsk, Bilarus. 2017. P.6-9.

34. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I.  Dynamic conductivity of graphene-containing shungite in microwave region. Book of papers of Conference «Fazovyye perekhody, kriticheskiye i nelineynyye yavleniya v kondensirovannykh sredakh» [Phase transitions, critical and nonlinear phenomena in condensed media]. Institute of Physics of Dagestan Scientific Centre RAS. Makhachala. 2017. P.432-436. (In Russian)

35. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of graphene-containing shungite in microwave region. Book of papers of XXV International Conference  «Elektromagnitnoye pole i materialy» [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.135-147. (In Russian)

36. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Influence of substratum on the reflection and propagation properties of two layer conducting structure. Book of papers of XXV International Conference «Elektromagnitnoye pole i materialy» [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.166-182. (In Russian)

37. Kovalevsky V.V.  Struktura uglerodnogo veshchestva i genezis shungitovykh porod.[Structure of carbon substance and extraction of shungite rocks]. Doctor-thesis. Petrozavodsk. 2007. (In Russian) 

38. Sheka E.F., Golubev E.A. Technical graphene (reduced graphene oxide) and its natural analog (shungite). Technical Physics. The Russian Journal of Applied Physics. 2016. Vol.61. No.7. P.1032-1038.

39. Golubev E.A., Ulyashev V.V., Veligshanin A.A. Porosity and structure parameters of Karelian shungite by data of small-angle dispersion of synchrotron radiation and microscopy. Kristallografiya [Crystallography]. 2016. Vol.61. No.1. P.74-85. (In Russian) 

40. Morosov S.V., Novoselov K.S., Geim A.K. Electron transport in graphene. Phys. Usp. 2008. Vol.51. No.7. P.744-748.

41. Hill E.W., Geim A.K., Novoselov K., Schedin F., Blake P. Graphene spin valve devices. IEEE Trans. Magn. 2006. Vol.42. No.10. P.2694-2696.

42. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Influence of shungite structure parameters on its electro-conductivity properties. Zhurnal radioelectroniki [Journal of Radio Electronics].  2017. No.5. Available at: http://jre.cplire.ru/jre/may17/11/text.pdf.

43. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The model presentation of microstructure, conductivity and microwave properties of graphene-containing shungite. Zhurnal radioelectroniki [Journal of Radio Electronics].  2018. No.5. Available at: http://jre.cplire.ru/jre/sep17/8/text.pdf.

44. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The model presentation of shungite microstructure in connection of its electro-conducting properties. Book of papers of XXV International Conference «Elektromagnitnoye pole i materialy» [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.148-165. (In Russian)

45. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Application of two-component media to valuation of shungite electrical conductivity. Book of papers of XXV International Conference «Elektromagnitnoye pole i materialy» [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.183-193. (In Russian)

46. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Application of electro-forced spectroscopy for geometrical simulation of shungite structure. Book of papers of XXV International Conference «Elektromagnitnoye pole i materialy» [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.194-206. (In Russian)

47. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure properties of graphene-containing shungite by the data of x-ray spectrum analysis. /Zhurnal radioelectroniki [Journal of Radio Electronics]. 2019. ¹4. https://doi.org/10.30898/1684-1719.2019.4.1 (In Russian)

48. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The application of harmonic analysis of x-ray spectroscopy data for investigation of graphene-containing shungite structure. // Book of papers of XXVII International conference «Electromagnetic field and materials (fundamental physical investigations)». M.: NIU MEI. 2019. P.227-237. (In Russian).

49. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The integral conductivity discrete model of graphene-containing shungite. Book of papers of XXVII International conference «Elektromagnitnoye pole i materialy (fundamental'nyye fizicheskiye issledovaniya)» [Electromagnetic field and materials (fundamental physical investigations)]. Moscow, NIU MEI. 2019. P.238-245. (In Russian)

50. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The integral conductivity discrete model of graphene-containing shungite. Book of papers of XXVII International conference «Elektromagnitnoye pole i materialy (fundamental'nyye fizicheskiye issledovaniya)» [Electromagnetic field and materials (fundamental physical investigations)]. Moscow, NIU MEI. 2019. P.238-245. (In Russian)

 51. Makeeva G.S., Golovanov O.A., Rinkevich A.B. A probabilistic model and electrodynamic analysis of the resonance interaction of electromagnetic waves with magnetic 3D nanocomposites. Journal of Communications Technology and Electronics. 2014. Vol.59. No.2. P.139-144. 

52. Golovanov O.A., Makeeva G.S., Rinkevich A.B. Interaction of terahertz electromagnetic waves with periodic gratings of graphene micro- and nanoribbons. Technical Physics. The Russian Journal of Applied Physics. 2016. Vol.61. No.2. P.274-282.

53. Makeeva G.S., Golovanov O.A. Matematicheskoye modelirovaniye elektronnoupravlyayemykh ustroystv teragertsovogo diapazona na osnove grafena i uglerodnykh nanotrubok [Mathematical simulation of electron-guided designs of thera-cycle frequency range on the basis of graphene and carbon nano-tubes]. Penza, Penza State University. 2018. (In Russian)

54. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of electrical and structural properties of shungite based on the conductivity cards analysis. // Book of papers of XXVI International conference «Electromagnetic field and materials (fundamental physical investigations)». M.: NIU MEI. 2018. P.293-302. (In Russian). 

55. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 1. Concentration of carbon. Zhurnal radioelectroniki [Journal of Radio Electronics].  2018. No.8. https://doi.org/10.30898/1684-1719.2018.8.5

56. AAntonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 2. Discretization of structure. Zhurnal radioelectroniki [Journal of Radio Electronics].  2018. ¹8. Available at: https://doi.org/10.30898/1684-1719.2018.8.6

57. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 3. Integral conductivity. Zhurnal radioelectroniki [Journal of Radio Electronics].  2018. ¹9. https://doi.org/10.30898/1684-1719.2018.9.1.

58. Goldstein D., Yakovits H., editor. Practical Scanning Electron Microscopy. New York, Plenum Press. 1975. https://doi.org/10.1007/978-1-4613-4422-3
58. Stoyanov P.A. Electron microscope. In: Fizicheskaya entsiklopediya.. T5. [Physic encyclopedia. Vol.5]. Moscow, Bol'shaya Rossiyskaya entsiklopediya Publ. 1998. P.574-578. (In Russian)

59. Beyeozkin V.I. Formirovaniye, stroyeniye, svoystva zamknutykh chastits ugleroda i struktur na ikh osnove [Forming, structure, properties of closed carbon particles and structures on its basis]. Doctor-thesis. Velikiy Nowgorod. 2009. (In Russian)

60.  Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Presentation of electrical conductivity of graphene-containing shungite on the basis of current tubes model. Zhurnal radioelectroniki [Journal of Radio Electronics]. 2020. ¹3. https://doi.org/10.30898/1684-1719.2020.3.7. (In Russian)

61. Application of current tubes model for investigation of parameters of graphene-containing shungite on the nano-level. // Book of papers of XXVIII International conference «Electromagnetic field and materials (fundamental physical investigations)». M.: NIU MEI. 2020. P.175-185. (In Russian). 

62. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Application of block-discretization method for analysis of electrical conductivity of graphene-containing shungite. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.3. https://doi.org/10.30898/1684-1719.2021.3.3  (In Russian)

63. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of electrical conductivity of graphene-contained shungite using the high-resolution scanning electron microscopy. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.3. https://doi.org/10.30898/1684-1719.2021.3.9   (In Russian)

64. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Application of decomposition method for calculation of electrical conductivity of shungite based on the electron-microscopic cards of carbon distribution. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.3. https://doi.org/10.30898/1684-1719.2021.3.13.  (In Russian)

 

For citation:

Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Application of independent-channel method for investigation of electrical conductivity of graphene-containing shungite. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.7. https://doi.org/10.30898/1684-1719.2021.7.6.  (In Russian)