Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 7

Full text in Russian (pdf)

Russian page


DOI https://doi.org/10.30898/1684-1719.2021.7.7

UDC 537.874; 537.624




V. S. Vlasov 1, V. G. Shavrov 2, V. I. Shcheglov 2

Syktyvkar State University, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia


The paper was received on March 9, 2021


Abstract. The subject of investigation in this work is the excitation of magnetization precession in magnetic film on the surface of which is formed the temperature relief which is formed by interference picture  formatted by preliminary divided ray from femtosecond laser. It is mentioned the discovered in experiment the dependence of excitation efficiency from the orientation of magnetic field applied in the plane of film. The main aim of this work is the theoretical interpretation of observed orientation dependence. The realized in experiment scheme “pump-probe” is described. The whole geometry of task is proposed. This geometry includes in oneself the magnetic film with formed in its surface interference picture and applied in the plane of film the constant field. It is shown that by the thermal expansion in the film the elastic waves two types are excited; the surface Rayleigh waves and leaky longitudinal waves. The projections of wave-vectors of propagating waves to plane of film are normal to the strips of interference picture. The orientation of field may change from to longitudinal to transverse from the same strips. The components of deformation tensor of Rayleigh and leaky waves are determined. The precession of magnetization in the coordinate system connected with field is investigated. By using the apparatus of crossing matrixes it is found the components of deformation tensor are determined. In the frame of linear approach in this system the task about excitation of magnetization precession by elastic deformations by Rayleigh and leaky waves is solved. The dynamical component of magnetization precession which ensures the light polarization rotation which passes along the normal to the plane of film is found. It is shown that the angle of rotation is straight proportional to the tensor deformation components with the summarization with the resonance character of precession magnetization dependence from the value of magnetic field. The dependence of polarization rotation from orientation of field which is applied in the plane of film is found. It is shown that by the orientation of field along and across the interference stripes the rotation of polarization plane is absent. Between these extreme orientations the dependence has appearance as two maxima divided by deep minimum. The received results are compared with data of experiment. It is found the quality and in some cases quantity correlation. The recommendations for further development of work are proposed. 

Key words: femtosecond laser, magnetoelastic interaction, “pump-probe” method.


1. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996. Vol.76. No.22. P.4250-4253.

2. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010. Vol.82. No.3. P.2731-2784.

3. Every A.G. Measurement of the near-surface elastic properties of solids and thin supported films. Measurement Science and Technology. 2002. Vol.13. P.R21-R39.

4. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. Journ. Appl. Phys. 2016. Vol.120. No.14. P.140901(16).

5. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. Ann. Phys. (Berlin). 2013. Vol.525. No.1-2. P.2-30.

6. Ka Shen, Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films. Phys. Rev. Lett. 2015. Vol.115. No.19. P.197201(5).

7. Linnik T.I., Scherbakov A.V., Yakovlev D.R., Liu X., Furdina J.K., Bayer M. Thery of magnetization precession induced by picosecond strain pulse in ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. B. 2011. Vol.84. No.21. P.214432(11).

8. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in galfenol thin films. Appl. Phys. Lett. 2013. Vol.103. No.3. P.032409(5).

9. Jäger J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons. Phys. Rev. B. 2015. Vol.92. No.2. P.020404(5).

10. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. The paradoxical diversity of ultrafast laser-induced demagnetization reconciled. Nature Materials. Supplementary Information. 2009. P.1-4. 

11. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Materials. 2010. Vol.9. No.3. P.259-265.

12. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. Phys. Rev. B. 2012. Vol.86. No.13. P.134415(13).

13. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers. Phys. Rev. B. 2014. Vol.90. No.9. P.094401(8).

14. Kabichenkov A.F. Influence of light field on dispersion of magnetic-dipole waves in ferromagnetic. Zhurnal tekhnicheskoy fiziki [Technical Physics]. 1994. Vol.64. No.8. P.159-161. (In Russian) 

15. Chernov A.I., Kozhaev M.A., Vetoshko P.M., Dodonov D.V., Prokopov A.R., Shumilov A.G., Shaposhnikov A.N., Berzhansky V.N., Zvezdin A.K., Belotelov V.I. Local probing of magnetic films by the optical excitation of magnetostatic waves. Physics of the Solid State. 2016. Vol.58. No.6. P.1128-1134. https://doi.org/10.1134/S106378341606007X

16. Beaurepaire E., Turner G.M., Harrel S.M., Beard M.C., Bigot J.Y., Schmuttenmaer C.A. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 2004. Vol.84. No.18. P.3465-3467.

17. Hilton D.J., Averitt R.D., Meserole C.A., Fisher G.L., Funk D.J., Thompson J.D., Taylor A.J. Terahertz emission via ultrashort-pulse excitation of magnetic metal films. Optics Letters. 2004. Vol.29. No.15. P.1805-1807.

18. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Radiation of electromagnetic wave out of magnetic film by the action of  femtosecond light pulse. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2020. No.6. https://doi.org/10.30898/1684-1719.2020.6.14  (In Russian)

19. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Electromagnetic radiation by shock changing of magnetization subjected the action of femto-second light pulse. Technical Physics Letters. 2021. Vol.47. No.11. P.3-5.  

20. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients. Phys. Rev. B. 2016. Vol.94. No.2. P.024415(7).

21. Janusonis J., Jansma T., Chang C.L., Liu Q., Gatilova A., Lomonosov A.M., Shalagatskyi V., Pezeril T., Temnov V.V., Tobey R.I. Transient grating spectroscopy in magnetic thin films: simultaneous detection of elastic and magnetic dynamics. Scientific Reports. 2016. Vol.6. Article No.29143. P.1-10. https://www.nature.com/articles/srep29143

22. Chang C.L., Lomonosov A.M., Janusonis J., Vlasov V.S., Temnov V.V., Tobey R.I. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic oscillator. Phys. Rev. B. 2017. Vol.95. No.6. P.060409(5).

23. Lomonosov A.M., Vlasov V.S., Janusonis J., Chang C.L., Tobey R.I., Pezeril T., Temnov V.V. Magneto-elastic symmetry breaking with surface acoustic wsves.  Proceedings of  “The 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics” (META-16 Malaga-Spain). ISSN 2429-1390. P.1-2. http://metaconferences.org.    

24. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The orientational characteristics of magnetoelastic waves excitation by femtosecond light pulses. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2017. ¹6. Available at: http://jre.cplire.ru/jre/jun17/5/text.pdf.

25. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The energy appreciation of field influence on effectiveness of magnetoelastic waves excitation in nickel film by femtosecond laser. Book of papers of XXV International conference “elektromgnitnoye pole I materialy” [Electromagnetic field and materials]. Moscow, NIU MEI. 2017. P.207-221. (In Russian)

26. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ. 1976. (In Russian)

27. Kikoin I.K., Kikoin A.K. Molekulyarnaya fizika [Molecular physics]. Moscow, Fizmatgiz Publ. 1962. (In Russian)

28. Vonsovsky S.V., Shur Ya.S. Ferromagnetizm [Ferromagnetism]. Moscow, OGIZ Gostechizdat Publ. 1948. (In Russian)

29. Gurevich A.G. Magnitnyi rezonans v ferritakh i antiferromagnetikakh [Magnetic resonance in ferrites and antiferromagnetics]. Moscow, Nauka Publ., 1973, 588 p. (In Russian)

30. Gurevich A.G., Melkov G.A. Magnitnye kolebaniya i volny [Magnetic oscillations and waves]. Moscow, Nauka Publ., 1994 (In Russian)

31. LeCraw R.C., Comstock R.L. Magnetoelastic interactions in ferromagnetic dielectrics. In: Physical Acoustics. V.3. Part.B. Lattice dynamics. New York and London, Academic Press. 1965. P. 156.

32. Gurevich A.G. Ferrity na sverkhvysokikh chastotakh [Ferrites on microwave frequencies]. Moscow, Gos. Izd. fiz. mat. lit. 1960. (In Russian)

33. Shavrov V.G., Shcheglov V.I. Magnetostaticheskiye volny v neodnorodnykh polyakh [Magnetostatic waves in nonuniform fields]. Moscow, Fizmatlit Publ. 2016. (In Russian)

34. Shavrov V.G., Shcheglov V.I. Ferromagnitny resonans v usloviyakh orientatsionnogo perekhoda [Ferromagnetic resonance in conditions of orientation trasition]. Moscow, Fizmatlit Publ., 2018. (In Russian)

35. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. Journal of Communications Technology and Electronics. 2009. Vol.54. No.7. P.821. 

36. Zvezdin A.K., Kotov V.A. Magnetooptika tonkikh plenok [Magneto-optics of thin films]. Moscow, Nauka Publ. 1988. (In Russian)

37. Shcheglov V.I. Interaction of surface magnetostatic waves by elastic Rayleigh-waves in cubic ferromagnetic. Fizika tverdogo tela [Physics of the Solid State]. 1972. Vol.14. No.6. P.1642-1647. (In Russian) 

38. Landau L.D., Lifshits E.M. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ. 1965. (In Russian)  

39. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

40. Lisovsky F.V. Fizika tsilindricheskikh magnitnykh domenov [Physics of bubble magnetic domains]. Moscow. Sovetskoye Radio Publ. 1979. (In Russian)


 For citation:

Vlasov V.S., Shavrov V.G., Shcheglov V.I. Orientational characteristics of magnetization precession excitation on the interference grating formed by femtosecond laserZhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.7. https://doi.org/10.30898/1684-1719.2021.7.7  (In Russian)