Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 7
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.7.9

UDC 621.396.969

 

Accuracy estimation of the absolute phase recovery in interferometric synthesized aperture radars data processing

 

Andrey V. Sosnovsky

Ural Federal University n.a. the 1st President of Russia B.N. Yeltsin, Mira st., 19, Ekaterinburg, 620002, Russia

 

The paper was received on June 15, 2021, after correction – on July 6, 2021

 

Abstract. The problem of accuracy estimation of the absolute phase recovery in interferometric synthesized aperture radars (InSAR) data processing is considered. A method for accuracy estimation based on the calculation of the standard deviation of the reference phases and the absolute phases measured by the interferometric system in the radar image coordinate system "azimuth – slant range" is developed. The method includes converting the coordinates of the reference topographic height marks from the geographical coordinate system to the radar image coordinate system and then calculating of the transformation parameters between the reference heights and the measured absolute phases using the least squares method. The latter allows one to evaluate the performing effectiveness of individual stages of interferometric processing (multilooking, phase noise suppression, phase unwrapping) and experimentally determine the most effective processing algorithms that provide the best accuracy of the phase recovery and their optimal parameters. The method is tested using the ALOS PALSAR radar images obtained under various imaging conditions.

Key words: synthesized aperture radars, InSAR data processing, digital elevation models, phase noise suppression, phase unwrapping.

References

1. Gruzdov V.V., Kolkovskii Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii distantsionnogo zondirovaniya Zemli iz kosmosa [New techniques for the remote sensing of the Earth]. Moscow, TEKHNOSFERA Publ. 2018. 482 p. (In Russian)

2. Zakharov A.I., Kostiuk E. A., Denisov P.V., Badak L.A. Earth observation with spaceborne radar interferometric systems and its prospects within the framework of "CONDOR-FKA" project. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2019. No.1. https://doi.org/10.30898/1684-1719.2019.1.2 (In Russian)

3. Karnyshev V. I., Avdzeiko V. I., Pascal E. S. The patent analysis features of different purpose radar systems with using the resources of the US Patent and Trademark Office. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.1. https://doi.org/10.30898/1684-1719.2021.1.4 (In Russian)

4. Sosnovsky A. V. InSAR data processing in digital elevation models creating tasks: state-of-art and issues. Ural'skii radiotekhnicheskii zhurnal [Ural Radio Engineering Journal]. 2020. Vol.4. No.2. P.198–233.

https://doi.org/10.15826/urej.2020.4.2.004 (In Russian)

5. Berry P.A.M., Garlick J.D., Smith R.G. Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment. 2007. Ή1. Ρ.17–27. https://doi.org/10.1016/j.rse.2006.07.011

6. Brown Jr.C.G., Sarabandi K., Pierce L.E. Validation of the Shuttle Radar Topography Mission Height Data. IEEE Transactions on Geoscience and Remote Sensing. 2005. Ή8. P.1707–1715. https://doi.org/10.1109/TGRS.2005.851789

7. Lee I.S., Chang H.-C., Ge L. GPS Campaigns for Validation of InSAR Derived DEMs. Journal of Global Positioning Systems. 2005. Ή1-2. P.82–87. https://doi.org/10.5081/jgps.4.1.82

8. Lucau C., Moreau B., Le Boulengé E., Defourny P. A priori accuracy assessment of the DEM derived by InSAR. Proceedings of the Third International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications. 2002. P.273–278.

9. Sun G., Ranson K.J., Kharuk V.I., Kovacs K. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment. 2003. Ή4. P.401–411. https://doi.org/10.1016/j.rse.2003.09.001

10. Rosen P.A., Hensley S., Joughin I.R., Li F., Madsen S.N., Rodriguez E., Goldstein R.M. Synthetic Aperture Radar Interferometry. IEEE Proc. 2000. Ή88(3). P.333–382

11. Hanssen R.F. Radar interferometry. Data interpretation and error analysis. Dordrecht: Kluwer academic publishers. 2002. 308 p.

12. Verba V.S., Neronskiy L.B., Osipov I.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya [Space-borne Earth Surveillance Radar Systems]. 2010. Moscow, Radiotechnika Publ. 680 p. (In Russian)

13. Antonov I.K., Detkov A.N., Nitsak D.A., Tonkikh A.N., Tsvetkov O.E. Vozdushnaya razvedka. Avtomatizirovannoe deshifrirovanie radiolokatsionnykh izobrazhenii [Aerial reconnaissance. Automated decoding of radar images]. Moscow, Radiotechnika Publ., 2021. 296 p. (In Russian)

14. Atroshenko L. M., Gorobec N.N., Krasnogorskiy M.G., Malukov V.M. Experience of creation of the ground calibration polygon complex for the space synthetic aperture radar testing. Vestnik SibGAU [SibGAU Journal]. 2013. No.5(51). P.30–32. (In Russian)

15. Lepekhina T.A., Nikolaev V. I., Semenov M. A., Charykov I. ., Chikachev V.S. Test range equipment for spaceborne synthetic aperture radar calibration and validation. Vestnik SibGAU [SibGAU Journal]. 2013. No.5(51). P.26–29. (In Russian)

16. Holecz I.F., Moreira J.H., Pasquali P., Voigt S., Meier E., Nuesch D. Height model generation, automatic geocoding and mosaicing using airborne AeS-1 InSAR data. IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing – A Scientific Vision for Sustainable Development. 1997. Ή4. P.1929–1931.  https://doi.org/10.1109/IGARSS.1997.609148

17. Bamler R., Hartl P. Synthetic aperture radar interferometry. Inverse Problems. 1998. Ή4. P.1–54. https://doi.org/10.1088/0266-5611/14/4/001

18. Technical Documentation. Opisanie modulya Photomod RADAR. Opisanie interferometricheskogo protsessora [Photomod RADAR User’s Guide. Interferometric Processor]. Vol.1–4. Moscow, RACURS Publ. 2007. (In Russian)

19. Technical Documentation. GKINP (GNTA) 06-278-04. Rukovodstvo pol'zovatelya po vypolneniyu rabot v sisteme koordinat 1995 goda [Federal state cartographic norms and rules 06-278-04. 1995 Coordinate System User's Guide]. Moscow, TSNIIGAIK Publ. 2004. 88 p. (In Russian)

20. Sosnovsky A.V., Kobernichenko V.G. An Efficiency Estimation for Multilooking and Phase Noise Suppression Methods for Spaceborne Interferometric Synthetic Aperture Radars Data Processing. Proceedings of the 14th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering, APEIE 2018.  2018. P.434–438.

21. Fornaro G., Franceschetti G., Lanari R. Interferometric SAR phase unwrapping using Green's formulation. IEEE Transactions on Geoscience and Remote Sensing. 1996. Vol.34. No.3. P.720–727.

22. Costantini M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sensing. 1998. No.36. P.813–821.

23. Chen C.W., Zebker H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2000. Vol.17. No.3. P.401–414.

 

For citation:

Sosnovsky A.V. Accuracy estimation of the absolute phase recovery in interferometric synthesized aperture radars data processing. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.7. https://doi.org/10.30898/1684-1719.2021.7.9  (In Russian)