Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. ¹7
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.7.2

 

CREATION TECHNOLOGIES DFB LASER
AND WGM RESONATOR
FOR OEO IN MICROWAVE PHOTONIC RADARS

 

N.K. Galkin, N.A. Golov, I.I. Yurasova

 

Bauman Moscow State Technical University

105005, Russia, Moscow, 2-ya Baumanskaya, 5

 

The paper was received May 17, 2022

 

Abstract. Technologies for creating microresonators based on the effect «whispering gallery modes» (WGM) and distributed feedback (DFB) lasers used in an optoelectronic generator (OEO) are investigated and generalized. The calculation of the natural frequencies WGM resonator and DFB laser is presented. Software modeling of electromagnetic field distribution in MATLAB environment is implemented. An approach to the manufacturing technology DFB laser with a low-level phase noise based on a photonic crystal (PC) is proposed. The possibility of using this laser and resonator in an optoelectronic system for generating an ultrahigh frequency (UHF) signal to create coherent microwave photonic radars is considered. The advantages of these lasers for creating a single master OEO of promising multi-band radar are shown.

Key words: DFB laser, WGM resonator, optoelectronic oscillator (OEO), microwave photonic radars.

Corresponding author: Galkin Nikita Konstantinovich, selenium322@gmail.com


 

References

1. Dianov Å.Ì., Prokhorov À.Ì. Lasers and fiber optics. Uspekhi fizicheskikh nauk. [Physics-Uspekhi (Advances in Physical Sciences)]. 1986. V.148. ¹2. P.289-311. http://doi.org/10.3367/UFNr.0148.198602c.0289 (In Russian)

2. Bortsov À.À. Technologies for creating ultra-low-noise (precision) microwave generators based on a laser optoelectronic autogenerator. Naukoemkie tekhnologii. [Journal Science Intensive Technologies]. 2011. V.12. ¹9. P.33-40. (In Russian)

3. Gorodetskii Ì.L., et al. High-quality optical microresonators with whispering gallery-type modes and their application in precision measurements. Metrologiya. [Metrology]. 2014. ¹12. P.22-40. (In Russian)

4. Luk'yanov V.N., et al. Lasers with distributed feedback (review). Kvantovaya elektronika [Quantum Electronics]. 1975. V.2. ¹11. P.2373-2398. (In Russian)

5. Vollmer F., et al. Protein detection by optical shift of a resonant microcavity. Applied physics letters. 2002. V.80. ¹21. P.4057-4059. http://doi.org/10.1063/1.1482797

6. Rostami A., et al. Microsphere and Fiber Optics based Optical Sensors. Optical Sensors - New Developments and Practical Applications. INTECH Publ. 2014. P.83-102. http://doi.org/10.5772/57465

7. Abdalmalak K.A., et al. Microwave radiation coupling into a WGM resonator for a high-photonic-efficiency nonlinear receiver. 2018 48th European Microwave Conference (EuMC). IEEE. 2018. P.781-784. http://doi.org/10.23919/EuMC.2018.8541628

8. Volyanskiy K., et al. Compact optoelectronic oscillator using whispering gallery mode resonators for radio-frequency and millimeter wave generation. International Society for Optics and Photonics. 2011. V.7936. P.79360B. https://doi.org/10.1117/12.876985

9. Merrer P.H., et al. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators. Applied optics. 2012. V.51. ¹20. P.4742-4748. https://doi.org/10.1364/AO.51.004742

10. Braunfel'ds Ya., et al. Obtaining frequency combs in generators on WGM in microspheres for telecommunication applications. Kvantovaya elektronika [Quantum Electronics]. 2020. V.50. ¹11. P.1043-1049. (In Russian)

11. Patent RF ¹2710002 C1. Bilenko I.À., et al. Kompaktnyi pribor s lazerami s mnozhestvom prodol'nykh mod, stabilizirovannymi vysokodobrotnymi mikrorezonatorami s generatsiei opticheskikh chastotnykh grebenok. [Compact device with lasers with multiple longitudinal modes, stabilized high-quality microresonators with generation of optical frequency combs]. Application Date: 27.03.2019. Publication Date: 23.12.2019. URL: https://patenton.ru/patent/RU2710002C1

12. Ryu H.Y., et al. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Optics express. 2004. V.12. ¹8. P.1708-1719. https://doi.org/10.1364/OPEX.12.001708

13. Srinivasan K., et al. Experimental demonstration of a high quality factor photonic crystal microcavity. Applied Physics Letters. 2003. V.83. ¹10. P.1915-1917. https://doi.org/10.1063/1.1606866

14. Lee P.T., et al. High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect. Applied physics letters. 2007. V.90. ¹15. P.151125. https://doi.org/10.1063/1.2724899

15. Sumetsky M. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Optics letters. 2004. V.29. ¹1. P.8-10. https://doi.org/10.1364/OL.29.000008

16. Murugan G.S., Wilkinson J.S., Zervas M.N. Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add–drop filters. Optics letters. 2010. V.35. ¹11. P.1893-1895. https://doi.org/10.1364/OL.35.001893

17. Sumetsky M., Dulashko Y., Windeler R.S. Super free spectral range tunable optical microbubble resonator. Optics letters. 2010. V.35. ¹11. P.1866-1868. https://doi.org/10.1364/OL.35.001866

18. Sumetsky M., Dulashko Y., Windeler R.S. Optical microbubble resonator. Optics letters. 2010. V.35. ¹7. P.898-900. https://doi.org/10.1364/OL.35.000898

19. Li H., et al. Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators. Optics express. 2010. V.18. ¹24. P.25081-25088. https://doi.org/10.1364/OE.18.025081

20. Vollmer F., Arnold S., Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. Proceedings of the National Academy of Sciences. 2008. V.105. ¹52. P.20701-20704. https://doi.org/10.1073/pnas.0808988106

21. Zhang M., et al. In-fiber whispering-gallery mode microsphere resonatorbased integrated device. Optics letters. 2018. V.43. ¹16. P.3961-3964. https://doi.org/10.1364/OL.43.003961

22. Li C., et al. In-Fiber BaTiO3 Microsphere Resonator for High-Sensitivity Temperature Measurement. Micromachines. 2021. V.12. ¹3. P.318. https://doi.org/10.3390/mi12030318

23. Lin J., et al. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A. 2014. V.116. ¹4. P.2019-2023. https://doi.org/10.1007/s00339-014-8388-1

24. Maker A.J., Armani A.M. Fabrication of silica ultra high quality factor microresonators. Journal of visualized experiments: JoVE. 2012. ¹65. P.4164. https://doi.org/10.3791/4164

25. Maleki L., et al. Microwave Oscillators Based on Nonlinear WGM Resonators [web]. Tech Briefs. Date of access: 30.03.2022. URL: https://www.techbriefs.com/component/content/article/tb/supplements/ptb/briefs/12121

26. Savchenkov A.A., et al. Whispering-gallery mode based opto-electronic oscillators. 2010 IEEE International Frequency Control Symposium. IEEE. 2010. P.554-557.

27. 27. DSG3000B Series RF Signal Generator [web]. RIGOL. Date of access: 05.04.2022. URL: https://www.techbriefs.com/component/content/article/tb/supplements/ptb/briefs/12121

28. Microwave signal generators [web]. Keysight. Date of access: 05.04.2022. URL: https://www.keysight.com/ru/ru/assets/7018-04483/brochures/5991-4876.pdf

29. Zadorin À.S., Lukina À.À. Resonant system of an optoelectronic autogenerator based on a pass-through planar optical disk microresonator. Komp'yuternaya optika. [Computer optics]. 2018. V.42. ¹1. P.60-66. https://doi.org/10.18287/2412-6179-2018-42-1-60-66 (In Russian)

30. Zaretskaya G.À., Drozdovskii À.V., Kalinikos B.À. A method for calculating the intrinsic resonant frequencies of optical resonators with whispering gallery modes. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika [Journal of the Russian Universities. Radioelectronics]. 2017. ¹1. P.56-64. (In Russian)

31. Suematsu Y. Dynamic single-mode lasers. Journal of lightwave technology. 2013. V.32. ¹6. P.1144-1158. https://doi.org/10.1109/JLT.2013.2293817

32. Êîgelnik H., Shank Ñ.V.. Stimulated emission in a periodic structure. Appl. Phys. Letts. 1971. V.18. P.152. https://doi.org/10.1063/1.1653605

33. Matsuo S., et al. Directly Modulated DFB Laser on SiO2/Si Substrate for Datacenter Networks. Journal of Lightwave Technology. 2015. V.33. ¹6. P.1217-1222. https://doi.org/10.1109/JLT.2014.2386875

34. Duprez H., et al. Hybrid III–V on Silicon Laterally Coupled Distributed Feedback Laser Operating in the O-Band. IEEE Photonics Technology Letters. 2016. V.28. ¹18. P.1920-1923. https://doi.org/10.1109/LPT.2016.2576021

35. Wang Q., et al. A Directly Modulated Laterally Coupled Distributed Feedback Laser Array Based on SiO2 Planarization Process. Applied Sciences. 2021. V.11. ¹1. P.221. https://doi.org/10.3390/app11010221

36. Aihara T., et al. Membrane III-V/Si DFB Laser Using Uniform Grating and Width-Modulated Si Waveguide. Journal of Lightwave Technology. 2020. V.38. ¹11. P.2961-2967. https://doi.org/10.1109/JLT.2020.2978808

37. Teng J.H., et al. Complex-Coupled DFB Laser Using a Buried SiO2 Grating. IEEE Photonics Technology Letters. 2008. V.20. ¹4. P.231-233. https://doi.org/10.1109/LPT.2007.913262

38. Hiraki T., et al. Integration of a high-efficiency Mach-Zehnder modulator with a DFB laser using membrane InP-based devices on a Si photonics platform. Optics Express. 2021. V.29. ¹2. P.2431-2441. https://doi.org/10.1364/OE.411483

39. Galkin N.Ê., Golov N.À. Methods for the synthesis of probing stepped-frequency signals. Zhurnal radioehlektroniki. [Journal of Radio Electronics] [online]. 2021. ¹6. https://doi.org/10.30898/1684-1719.2021.6.15

40. Kumar R., et al. Integrated multi-wavelength DFB laser with 200 GHz channel spacing. Proc. of SPIE V. 2022. V.12021. P.1202106-1. https://doi.org/10.1117/12.2626494

41. Liu Y., et al. Optical and RIN Spectrum Improvements in Necked Waveguide High-Power DFB Laser Diode. IEEE Photonics Technology Letters. 2022. V.34. ¹5. P.275-278. https://doi.org/10.1109/LPT.2022.3150799

42. Li M., et al. Development of narrow linewidth distribution feedback fiber laser for fiber hydrophone system. Third International Conference on Optoelectronic Science and Materials (ICOSM 2021). SPIE. 2021. V.12030. P.1203002.

43. Kumar R., et al. A multi-wavelength III-V/Si hybrid DFB laser with even wavelength spacing and uniform output power. 2021 IEEE 17th International Conference on Group IV Photonics (GFP). IEEE. 2021. P.1-2. https://doi.org/10.1109/GFP51802.2021.9673975

44. Gulzar A., Qazi G. Investigation and performance evaluation of DFB-(SP) EDFA configuration with optimum intrinsic EDFA parameters. Optical and Quantum Electronics. 2022. V.54. ¹1. P.1-19. https://doi.org/10.1007/s11082-021-03381-1

45. Zhang F., Pan S. Microwave photonic signal generation for radar applications. 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE. 2016. P.1-3. https://doi.org/10.1109/iWEM.2016.7504991

46. Pan S., and Zhang Y. Microwave photonic radars. Journal of Lightwave Technology. 2020. Ò.38. ¹19. Ñ.5450-5484. https://doi.org/10.1109/JLT.2020.2993166

47. Sinitskii A.S., Klimonsky S.O., Garshev A.V., Primenko A.E., Tretyakova Y.D. Synthesis and microstructure of silica photonic crystals. Mendeleev Commun. 2004. V.14. ¹4. P.165-167. https://doi.org/10.1070/MC2004v014n04ABEH001968

48. Yakimanskii À.V., et al. Monodisperse polymer particles with covalently attached chromophore groupings as structural elements of photonic crystals. Rossiiskie nanotekhnologii. [Russian nanotechnology]. 2006. V.1. ¹1-2. P.171-178. (In Russian)

49. Men'shikova À.Yu., et al. Synthesis of monodisperse polystyrene particles with a controlled structure of grafted copolymers in the surface layer. Vysokomolek. soed. A. [Polymer Science]. 2004. V.46. ¹9. P.1479-1487. (In Russian)

50. Vlasov Y.V., Bo X.-Zh., Sturm J.C., Norris D.J. On-chip natural assembly of silicon photonic bandgap crystals. Nature. 2001. V.414. P.289-293. https://doi.org/10.1038/35104529

51. Plekhanov À.I., Kalinin D.V., Serdobintseva V.V. Nanocrystallization of single crystal opal films and opal film heterostructures. Rossiiskie nanotekhnologii. [Russian nanotechnology]. 2006. V.1. P.233-239. (In Russian)

52. Mayoral R., Requena J., Moya J.S., López C., Cintas A., Miguez H., Meseguer F., Vázquez L., Holgado M., Blanco A. 3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure. Adv. Mater. 1997. V.9. ¹3. P.257-260. https://doi.org/10.1002/adma.19970090318

53. Kalinin D.V., Serdobintseva V.V., Shabanov V.F. The mechanism of laying monodisperse spherical silica particles in a photonic crystal film structure from lyophilic suspensions. Doklady Akademii nauk. [Documents of the Academy of Sciences]. 2008. V.419. ¹5. P.609-611. (In Russian)

54. Johnson N.P., McComb D.W., Richel A., Treble B.M., De La Rue R.M. Synthesis and optical properties of opal and inverse opal photonic crystals. Synthetic Metals. 2001. V.116. ¹1. P.469-473. https://doi.org/10.1016/S0379-6779(00)00417-3

55. Yurasova I.I., et al. Growth Rate of SiO2 Nanoclusters at Different Water : TEOS Molar Ratios in the Presence of an Alkaline Catalyst. Zhurnal fizicheskoi khimii [Journal of Physical Chemistry]. 2021. V.95. ¹6. P.923-927. https://doi.org/10.31857/S0044453721060297 (In Russian)

56. Yurasova I.I., Yurasov N.I., Galkin N.Ê. Stages of the synthesis of amorphous silica globules in the photonic crystal manufacturing technology. Neobratimye protsessy v prirode i tekhnike [Irreversible processes in nature and technology]. 2021. P.106-108. (In Russian)

57. Yurasov N. I., et al. Irreversible phase transitions in structural elements of synthetic opal. Journal of Physics: Conference Series. IOP Publishing. 2019. V.1348. ¹1. P.012082. https://doi.org/10.1088/1742-6596/1348/1/012082

For citation:

Galkin N.K., Golov N.A., Yurasova I.I. Ñreation technologies DFB laser and WGM resonator for OEO in microwave photonic radars. Zhurnal radioehlektroniki [Journal of Radio Electronics] [online]. 2022. ¹7. https://doi.org/10.30898/1684-1719.2022.7.2