Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 7
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.7.9

 

EURASIAN SUBMILLIMETER TELESCOPES (ESMT) PROJECT.

POSSIBILITY OF SUBMM IMAGE QUALITY IMPROVEMENT USING ADAPTIVE OPTICS

 

V.B. Khaikin 1, A.Yu. Shikhovtsev 2, V.E. Shmagin 3, M.K. Lebedev 1,
E.A. Kopylov 3,4, V.P. Lukin 4, P.G. Kovadlo 2

 

1 Special Astrophysical Observatory of Russian Academy of Sciences

369167, Russia, Nizhnij Arkhyz

2 Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences

664033, Russia, Irkutsk, Lermontova st. 126a

3 Institute of Astronomy of Russian Academy of Sciences

119017, Russia, Moscow, Pyatnitskaya st. 48

4 Zuev Institute of Atmospheric Optics, Siberian Branch of Russian Academy of Sciences

634055, Russia, Tomsk, Akademicheskii pr. 1

 

The paper was received May 21, 2022.

 

Abstract. Actual problems in submillimeter astronomy require the creation of instruments, which combine high sensitivity, angular resolution, wide field of view, and multi-wavelength (multicolor) spectral range. Currently, new single mm/submm telescopes are in great demand in Eurasia, as well as their inclusion in the Event Horizon Telescope (EHT) VLBI network. The concept of the Eurasian Submillimeter Teselscopes (ESMT) project involves the construction of three structurally identical mm/submm radio telescopes of the 15-21 m class on the Suffa Plateau, Uzbekistan (2400 m or higher), in the Russian Federation (3000 m or higher) and in Tibet, China (higher than 5000 m). The ESMT concept is considered, where the design of the European ALMA antennas is taken as a starting point. The antenna diameter should be increased from 12 m to 21 m, the optical layout and the structure of the truss frame will be changed accordingly, tertiary optics and an “active surface” have been added, and tools for its operational diagnostics have been proposed. The article presents variants of the ESMT optical scheme and tertiary optics, which make it possible to hold a compact cryostat with a KID-matrix in a vertical position to ensure its operability when the telescope is tilted. Comparison of ESMT capabilities with other mm/submm tools and projects is provided. The necessary astroclimatic conditions and characteristics of ESMT sites are considered, estimates of the precipitated water PWV, dPWV and the share of total cloudiness TCC for a number of practically interesting sites obtained using the ERA-Interim and ERA-5 reanalysis databases are presented. The influence of atmospheric turbulence on a radio telescope, radio astronomy methods for suppressing atmospheric fluctuations and possibilities of using adaptive optics, in particular, tip-tilt correction for improving the quality of submm images, are considered.

Key words: submillimeter astronomy, submillimeter telescope, astroclimate, adaptive optics.

Financing: The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the basic project of the Institute of Solar-Terrestrial Physics SB RAS "Methods and instruments of Astrophysical experiment" (unique number 0278-2021-0010), as well as the program of fundamental research SB RAS Institute of Atmospheric Optics SB RAS "Study of the formation of optical images and radiation beams in the atmosphere using adaptive optics, including the propagation of powerful, amplitude- and phase-modulated optical radiation" (FWRU-2021-0003).

Corresponding author: Khaikin Vladimir Borisovich, vkhstu@mail.ru

 

References

1. Bubnov G.M. et al. Searching for new sites for THz observations in Eurasia. IEEE Transactions on Terahertz Science and Technology. 2015. V.5. №1. P.64-72. https://doi.org/10.1109/TTHZ.2014.2380473

2. Koshelets V.P., Shitov S.V. Integrated superconducting receivers. Superconductor Science and Technology. 2000. V.13. №5. https://doi.org/10.1088/0953-2048/13/5/201

3. Gol'tsman G.N., Loudkov D.N. Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy. Radiophysics and Quantum Electronics. 2003. V.46. P.604-617. https://doi.org/10.1023/B:RAQE.0000024991.65949.d6

4. Rudakov K.I., Dmitriev P.N., Baryshev A.M., Khudchenko A.V., Hesper R., Koshelets V.P. Low-Noise SIS receivers for new radio-astronomy projects. Radiophysics and Quantum Electronics. 2019. V.62. P.547-555. https://doi.org/10.1007/s11141-020-10001-7

5. Balega Yu.Yu. et al. Superconductor receivers for space, balloon and ground-based subterahertz radio telescopes. Radiophysics and Quantum Electronics. 2020. V.63. P.479-500. https://doi.org/10.1007/s11141-021-10073-z

6. Gordeeva A.V. et al. Record electron self-cooling in cold-electron bolometers with a hybrid superconductor-ferromagnetic nanoabsorber and traps. Scientific Reports. 2020. V.10. https://doi.org/10.1038/s41598-020-78869-z

7. Koshelets V.P., Tarasov M.A. Superconducting terahertz receivers for space-borne and balloon-borne radio telescopes. Bulletin of the Russian Academy of Sciences: Physics. 2016. V.80. №4. P.471-475. https://doi.org/10.3103/s1062873816040225

8. Khaikin V.B. et al. On the Eurasian SubMillimeter Telescopes Project (ESMT). Proceedings of 7th All-Russian Microwave Conference. Moscow. 2020. P.47-51. https://doi.org/10.1109/RMC50626.2020.9312233

9. Marchiori G., Rampini F., Spinola M., De Lorenzi S., Bressan R., Tordi M. Towards the Eurasian Sub-Millimeter Telescope (ESMT): concept outline and first results. Vserossiiskaya konferentsiya «Nazemnaya astronomiya v Rossii. XXI vek». [All-Russian Conference "Terrestrial Astronomy in Russia. XXI century"]. Nizhny Arkhyz. 2020. P.378-383. https://doi.org/10.26119/978-5-6045062-0-2_2020_378

10. Duan R. et al. Toward Eurasian SubMillimeter Telescopes: the concept of multicolor subTHz MKID-array demo camera MUSICAM and its instrumental testing. Proceedings of 7th All-Russian Microwave Conference. Moscow. 2020. P.41-46. https://doi.org/10.1109/RMC50626.2020.9312270

11. Lukin V.P., Kanev F.Yu., Konyaev P.A., Fortes B.V. Numeric model of adaptive optics system. II. Wave front sensors and control elements. Atmospheric and Oceanic Optics. 1995. V.8. №3. P.215-219.

12. Nikolic B., Richer J., Hills R., Stirling A. Phase Correction for ALMA: Adaptive Optics in the Submillimetre. The Messenger. 2008. V.131. P.14-18.

13. Schloerb F.P., Carrasco L. Large Millimiter Telescope. Proceedings of 25th URSI General Assembly. Maastricht. 2002.

14. Quesada J.A. Precipitable water vapor content above Pico Veleta. Publications of the Astronomical Society of the Pacific. 1989. V.101. №638. P.441-444. https://doi.org/10.1086/132454

15. Greve A., Bremer M., Penalver J., Raffin P., Morris D. Improvement of the IRAM 30-m telescope from temperature measurements and finite-element calculations. IEEE Transactions on Antennas and Propagation. 2005. V.53. №2. P.851-860. https://doi.org/10.1109/TAP.2004.838785

16. Zabolotny B.F., Kardashev N.S., Artemenko Yu.N., Parshikov A.A., Shanin G.I. Fully-steerable radio telescope RT-70 in Suffa plateau, Uzbekistan: current state and perspectives. Vserossiiskaya astronomicheskaya konferentsiya 2001 [All-Russian Astronomical Conference 2001]. St. Petersburg. 2001. (In Russian)

17. Shuster K. et al. NOEMA: a powerful millimeter wave interferometer using next generation technology. Proceedings of SPIE 10700. Ground-based and Airborne Telescopes VII. 2018. https://doi.org/10.1117/12.2313489

18. Borovkov A.I., Shevchenko D.V., Gaev A.V., Gimmelman V.G., Machuev Y.I. finite-element modeling and thermal analysis of the RT-70 radio telescope main reflector. 4th International Conference on Antenna Theory and Techniques, ICATT 2003. Sevastopol. 2003. P.651-654. https://doi.org/10.1109/ICATT.2003.1238827

19. Greve A., Bremer M. Calculated thermal behavior of ventilated high precision radio telescopes. IEEE Antennas and Propagation Magazine. 2008. V.48. №3. P.9-19. https://doi.org/10.1109/MAP.2006.1703393

20. Bolli P. et al. Sardinia Radio Telescope: general description, technical commissioning and first light. Journal of Astronomical Instrumentation. 2015. V.4. №3-4. https://doi.org/10.1142/S2251171715500087

21. Monin Yu.G. The measurements of the elastic surface deformations of the reflector radiotelescope of the Crimean astrophysiscal oservatory. Izvestiya CRAO [Bulletin of the Crimean Astrophysical Observatory]. 1970. V.41-42. P.260-263. (In Russian)

22. Efanov V.F. et al. Observations of radio sources at a wavelength of 3.9 cm. Gor'kovskii nauchno-issledovatel'skii radiofizicheskii institut [Gorky Radio Physics Research Institute]. Preprint №55. 1979. (In Russian)

23. Mangum J.G., Baars, J.W.M., Greve A., Lucas R., Snel R., Wallace P.T., Evaluation of the ALMA Prototype Antennas. Publications of the Astronomical Society of the Pacific. 2006. V.118. №847. P.1257-1301. https://doi.org/10.1086/508298

24. Duan R., Li Z., Zhang L., Liu C., Zhang X., Niu C., Li S., Di Li. KID based sub-millimeter instrument for Eurasian Sub-Millimeter Telescopes. Vserossiiskaya konferentsiya «Nazemnaya astronomiya v Rossii. XXI veK» [All-Russian Conference "Terrestrial Astronomy in Russia. XXI century"]. Nizhny Arkhyz. 2020. P.384-389. https://doi.org/10.26119/978-5-6045062-0-2_2020_384

25. Sayers J. et al. The status of MUSIC: the multiwavelength sub-millimeter inductance camera. Proc. SPIE 9153. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. 2014. https://doi.org/10.1117/12.20554

26. Alvarez et al. Metrology and surface adjustment of primary reflector panels on the LMT. Proceedings of SPIE 9151. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. 2014. https://doi.org/10.1117/12.2056859

27. Yakovlev S.V., Yakunin V.V., Storozhenko A.A., Bursov N.N., Khaikin V.B. Results of geodetic measurements of surface topography and positioning accuracy of RATAN-600 shields using a laser tracker API TRACKER 3. Transactions of IAA RAS. 2012. V.24. P.103-108.

28. Ripak A.M., Khaikin V.B., Lebedev M.K. Aperture field recovery of a reflector radio telescope using phase shifting holography. Proceedings of 7th All-Russian Microwave Conference. Moscow. 2020. P.162-166. https://doi.org/10.1109/RMC50626.2020.9312237

29. Butler B.J., Steffes P.G., Suleiman S.H., Jenkins J.M. Accurate and consistent microwave observations of Venus and their implications. Icarus. 2001. V.154. P.226-238. https://doi.org/10.1006/icar.2001.6710

30. Kuz’min A.D. Radiofizicheskie issledovaniya Venery [Radiophysical investigation of Venus]. Мoscow, VINITI. 1967. 175 p. (In Russian)

31. Bubnov G.M., Vdovin V.F., Khaikin V.B., Tremblin P., Baron P. Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth’s atmosphere. 2020 7th All-Russian Microwave Conference (RMC). Moscow. 2020. P.229-232. https://doi.org/10.1109/RMC50626.2020.9312314

32. Ayvazian G.M. Rasprostranenie millimetrovykh I submillimetrovykh voln v oblakakh [Propagation of millimeter and submillimeter waves in clouds]. Leningrad, Gidrometeoizdat Publ. 1991. 479 p. (In Russian)

33. Chao-Lin Kuo. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. Astrophysical Journal. 2017. V.848. №1. P.4-11. https://doi.org/10.3847/1538-4357/aa8b74

34. Otarola A. et al. Precipitable Water Vapor, Temperature, and Wind Statistics At Sites Suitable for mm and Submm Wavelength Astronomy in Northern Chile. Publications of the Astronomical Society of the Pacific. 2019. V.131. №988. https://doi.org/10.1088/1538-3873/aafb78

35. Shikhovtsev A.Yu et al. Astroclimatic characteristics of the Sayan Solar Observatory and the Special Astrophysical Observatory sites for ground-based mm/submm astronomy. International conference “Submillimeter and millimeter astronomy: tasks and instruments”. Moscow, ASC LPI. 2021.

36. Wang Y. et al. Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau. Journal of Climate. 2017. V.30. №15. P.5699-5713. https://doi.org/10.1175/JCLI-D-16-0630.1

37. Kuzovlev V.V., Stankevich K.S. Effective height of absorption of radio waves of the centimeter band in atmospheric oxygen and water vapor. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika [Proceedings of Institutions of Higher Education. Radiophysics]. 1964. V.7. №1. P.46-50. (In Russian)

38. Cortés F. et al. Twenty years of PWV measurements in the Chajnantor Area. Astronomy & Astrophysics. 2020. V.640. https://doi.org/10.1051/0004-6361/202037784

39. Radford S.J.E., Peterson J.B. Submillimeter Atmospheric Transparency at Maunakea, at the South Pole, and at Chajnantor. Publications of the Astronomical Society of the Pacific. 2016. V.128. №965. P.1-13. http://dx.doi.org/10.1088/1538-3873/128/965/075001

40. Stotski А.А. Measurement of phase difference fluctuations of centimeter waves propagating in ground layer of atmosphere. Radiotekhnika i elektronika [Radiotechnics and electronics]. 1969. V.14. №9. P.1547-1551. (In Russian)

41. Stotski А.А., Berlin A.B., Kaidanovski M.N., Khaikin V.B. On radio emission fluctuation of cloudless atmosphere at centimeter wavelengths. Radiotekhnika i elektronika [Radiotechnics and electronics]. 1986. V.31. №10. P.1999-2002. (In Russian)

42. Maud L.T. et al. Phase correction for ALMA. Investigating water vapour radio­meter scaling: The long-baseline science verification data case study. Astronomy & Astrophysics. 2017. V.605. https://doi.org/10.1051/0004-6361/201731197

43. Wiedner M.C., Hills R.E., Carlstrom J.E., Lay O.P. Interferometric phase correction using 183 GHz water vapor monitors. Astrophysical Journal. 2001. V.553. №2. P.1036-1041. https://doi.org/10.1086/320943

44. Fried D.L. Statistics of a geometric representation of wavefront distortion. Journal of the Optical Society of America. 1965. V.55. №11. P.1427-1435. https://doi.org/10.1364/JOSA.55.001427

45. Tatarski V.I. Wave propagation in a turbulent medium. New York, Dover Publ. 2017. 288 p.

46. Pariiskii Yu.N., Stotski A.A. Possibility of obtaining radio images of celestial bodies with a resolution higher than 10-2 arcsec. Izvestiya GAO AN SSSR [Bulletin of the Main Astronomical Observatory (Pulkovo)]. 1972. №188. P.195-212. (In Russian)

47. Emerson D.T., Klein U., Haslam C.G.T. A multiple beam technique for overcoming atmospheric limitations to single-dish observations of extended radio sources. Astronomy & Astrophysics. 1979. V.76. P.92-105.

48. Reichertz L.A., Weferling B., Esch W., Kreysa E. The fastscanning observing technique for millimeter and submillimeter astronomy. Astronomy & Astrophysics. 2001. V.379. №2. P.735-739. https://doi.org/10.1051/0004-6361:20011227

49. Weferling B., Reichertz L.A., Schmid-Burgk J., Kreysa E. Principles of the data reduction and first results of the fastscanning method for (sub)millimeter astronomy. Astronomy & Astrophysics. 2002. V.383. №3. P.1088-1099. https://doi.org/10.1051/0004-6361:20011617

50. Nosov V.I. et al. A dual-wave atmosphere transparency radiometer of the millimeter wave range. Instruments and Experimental Techniques. 2016. V.59. №3. P. 374-380.

51. Bubnov G.M. et al. The results of astroclimate observations in the short-wave length interval of the millimeter-wave range on the Suffa plateau. Radiophysics and Quantum Electronics. 2017. V.59. №8-9. P.763-771. https://doi.org/10.1007/s11141-017-9745-7

52. Lapinov A.V., Lapinova S.A., Petrov L.Yu. On the benefits of the Eastern Pamirs for sub-mm astronomy. Proceedings of SPIE 11453. Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy X. 2020. https://doi.org/10.1117/12.2560250

53. Agafonov M.I. et al. The results of observation of the astroclimate on the Crimean peninsula in the shortwave part of the millimeter wavelength range. Astrophysical Bulletin. 2018. V.73. P.387-392. https://doi.org/10.1134/S1990341318030124

54. Bubukin I.T. et al. Analysis of the Results of Astroclimate Research at the Kara-Dag Radioastronomical Station in Crimea and the Possibilities for Reducing the Influence of the Atmosphere on Millimeter-Band Radioastronomical Observations. Journal of Experimental and Theoretical Physics. 2019. V.129. №1. P.35-45. https://doi.org/10.1134/S1063776119070148

55. Gorbunova T.Yu. Assessment of the South-Eastern Crimea for solar energy systems. Geopolitika i geodinamika regionov [Geopolitics and region geodynamics]. 2015. V.1(11). №4. P.49-60. (In Russian)

56. Mironova L.P., Shatko V.G. Meganom Peninsula in south-eastern Crimea (environmental conditions, flora, vegetation). Geopolitika i geodinamika regionov [Geopolitics and region geodynamics]. 2013. V.9. №2-2. P.26-64. (In Russian)

57. Landshaftno-geofizicheskie usloviya proizrastaniya (LGUP) lesov yugo-vostochnoi chasti gornogo Kryma [Lanscape-geophysical growth conditions of forests in the South-East part of the Mountain Crimea]. Simferopol, Tavria-Plus Publ. 2001. 136 p.

58. Nauchno-prikladnoi spravochnik po klimatu SSSR. Vypusk 10. Kniga 1 [Applied scientific reference book on the climate of the USSR. Issue 10. Book 1]. Leningrad, Gidrometeoizdat Publ. 1990. 605 p.

59. Nauchno-prikladnoi spravochnik po klimatu SSSR. Vypusk 10. Kniga 2 [Applied scientific reference book on the climate of the USSR. Issue 10. Book 2]. Leningrad, Gidrometeoizdat Publ. 1990. 320 p.

60. Nauchno-prikladnoi spravochnik po klimatu SSSR. Vypusk 13. [Applied scientific reference book on the climate of the USSR. Issue 13]. Leningrad, Gidrometeoizdat Publ. 1990. 725 p.

61. Nakariakov V.M., Melnikov V.F. Quasi-Periodic Pulsations in Solar Flares. Space Science Reviews. 2009. V.149. №1-4. P.119-151. https://doi.org/10.1007/s11214-009-9536-3

62. Morin G.P. A simple circular polarization selective surface. International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's. 1990. V.1. P.100-103. https://doi.org/10.1109/APS.1990.115058

63. Khaikin V.B., Luukanen A. Expected Characteristics of Multibeam Solar Radio Telescope with Focal Plane Array at 100 GHz. 3rd ESA Workshop on Millimetre Wave Technology and Applications. Espoo, Finland. 2003. P.419-424.

64. Woody D. et al. The CCAT 25m diameter submillimeter-wave telescope. Proceedings of SPIE 8444. Ground-based and Airborne Telescopes IV. 2012. https://doi.org/10.1117/12.925229

65. Klaassen P.D. et al. The Atacama Large Aperture Submillimeter Telescope (AtLAST). Proceedings of SPIE 11445, Ground-based and Airborne Telescopes VIII. 2020. https://doi.org/10.1117/12.2561315

66. Shikhovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Method for estimating the altitudes of atmospheric layers with strong turbulence. Atmospheric and Oceanic Optics. 2020. V.33. P.295-301. https://doi.org/10.1134/s1024856020030100

67. Kovadlo P.G., Lukin V.P., Shikhovtsev A.Yu. Development of the model of turbulent atmosphere at the Large solar vacuum telescope site as applied to image adaptation. Atmospheric and Oceanic Optics. 2019. V.32. №2. P.202-206. https://doi.org/10.1134/S1024856019020076

68. Shikhovtsev A.Yu., Kovadlo P.G., Lukin V.P. Temporal variations of the turbulence profiles at the Sayan Solar Observatory Site. Atmosphere. 2019. V.10. №9. P.499. https://doi.org/10.3390/atmos10090499

69. Lukin V.P. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi. 2014. V.57. P. 556-592. https://doi.org/10.3367/UFNe.0184.201406b.0599

70. Noll R.J. Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America. 1976. V.66. №3. P.207-211. https://doi.org/10.1364/JOSA.66.000207

71. B. Nicolic. Interference of coefficients for Use in Phase Correction I. ALMA Memo #587. 2009. P.1-16.

72. Pardo J.R., Cernicharo J., Serabyn E. Atmospheric Transmission at Microwaves (ATM): An Improved Model for mm/submm applications. IEEE Transactions on Antennas and Propagation. 2001. V.49. №12. P.1683-1694. https://doi.org/ 10.1109/8.982447

73. Zauderer B.A. et al. The CARMA paired antenna calibration system: atmospheric phase correction for millimeter wave interferometry and its application to mapping the ultraluminous galaxy ARP 193. Astronomical Journal. 2016. V.151. https://doi.org/10.3847/0004-6256/151/1/18

74. Waters J.W. Absorption and emission by atmospheric gases. Methods of Experimental Physics. V. 12. Part B (Astrophysics: Radio Telescopes).1976. P.142-176. https://doi.org/10.1016/S0076-695X(08)60684-5

75. Olmi L. The Effects of the Atmosphere. Single-Dish Radio Astronomy: Techniques and Applications. ASP Conference Series. V. 278. San Francisco, CA, Astronomical Society of the Pacific. 2002.

For citation:

Khaikin V.B., Shikhovtsev A.Yu., Shmagin V.E., Lebedev M.K., Kopylov E.A., Lukin V.P., Kovadlo P.G. Eurasian Submillimeter Telescopes (ESMT) project. Possibility of submm image quality improvement using adaptive optics. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №7. https://doi.org/10.30898/1684-1719.2022.7.9 (In Russian)