Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹7
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.7.10

 

 

TIME SYNCHRONIZATION IN THE FIFTH-GENERATION MOBILE RADIO SYSTEM

 

M. Assaf, O. G. Ponomarev

 

Tomsk State University

634050, Tomsk, Lenin Ave., 36.

 

The paper was received July 4, 2023.

 

Abstract. In this paper, the issue of time synchronization between the base station and user equipment in a fifth-generation cellular communication system is considered. In order to reduce the complexity of the current method of estimating the start symbol offset, a modification of the algorithm is proposed, in which the cross-correlation is computed in parallel for each DMRS (Demodulation Reference Signal) symbol. Furthermore, calculating the cross-correlation for each DMRS symbol allows for the development of a new method of estimating the sampling frequency offset based on the time interval estimation between two consecutive DMRS signals at the output of the matched filter. It is demonstrated that using a parabolic interpolation of the local regions around the correlation peak at the matched filter outputs yields an accurate estimation of the temporal distance between the received DMRS signals. Numerical simulation results show that the suggested technique can estimate the sampling frequency offset with an accuracy of less than 1 ppm over the entire range of signal-to-noise ratio values.

Keywords: 5G mobile communication, DMRS, sampling frequency offset, CP-OFDM, start symbol offset

Corresponding author: Mohammad Assaf, md.moh1600@gmail.com  

 References

1. ETSI TS 138 211 V15.2.0 Technical specification, Release 15 // European Telecommunications Standards Institute. – Sophia Antipolis, 2018. – URL: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3213.

2. Yin J. L. et al. A novel network resolved and mobile assisted cell search method for 5G cellular communication systems // IEEE Access. – 2022. – V. 10. – P. 75331–75342. https://doi.org/10.1109/ACCESS.2022.3191357.

3. ETSI TR 138 912 V15.0.0 Technical specification, Release 15 // European Telecommunications Standards Institute. – Sophia Antipolis, 2018. – URL: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3213.

4. Nogami H., Nagashima T. A frequency and timing period acquisition technique for OFDM systems // Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications IEEE. – 1995. – V. 27. – P. 1010–1015. https://doi.org/10.1109/PIMRC.1995.477096.

5. Van de Beek J. J., Sandell M., Borjesson P. O. ML estimation of time and frequency offset in OFDM systems // IEEE transactions on signal processing. – 1997. – V. 45. – P. 1800–1805. https://doi.org/10.1109/78.599949.

6. Del Castillo-Sanchez E. et al. Joint time, frequency and sampling clock synchronization for OFDM-based systems // 2009 IEEE Wireless Communications systems and Networking Conference. –2009. – P. 1–6. https://doi.org/10.1109/WCNC.2009.4917776.

7. Briggs E., Nutter B., McLane D. Sample clock offset detection and correction in the LTE downlink // Journal of Signal Processing Systems. – 2012. – V. 69. – P. 31–39. https://doi.org/10.1007/s11265-011-0643-5.

8. Yuan J., Torlak M. Joint CFO and SFO estimator for OFDM receiver using common reference frequency // IEEE Transactions on Broadcasting. – 2016. – V. 62. – ¹. 1. – P. 141–149. https://doi.org/10.1109/TBC.2015.2492470.

9. Sliskovic M. Sampling Frequency Offset Estimation and Correction in OFDM Systems // Proceedings of the IEEE. – 2001. – P. 437–440. https://doi.org/10.1109/ICECS.2001.957773.

10. Chen B., Wang H. Blind estimation of OFDM carrier frequency offset via oversampling // IEEE Transactions on Signal Processing. – 2004. – V. 52. – ¹. 7. – P. 2047–2057. https://doi.org/10.1109/TSP.2004.828899.

11. Jung Y. A. et al. Sampling Frequency Offset Estimation Scheme for CP-OFDM based NR side link System // Proceedings of the IEEE. – 2022. – P. 705–707. https://doi.org/10.1109/ICTC55196.2022.9952475.

12. Ïîíîìàðåâ Î. Ã., Àñàô Ì. Êîìïåíñàöèÿ ñìåùåíèÿ ÷àñòîòû äèñêðåòèçàöèè â âîñõîäÿùåì êàíàëå ñèñòåìû ñîòîâîé ñâÿçè ïÿòîãî ïîêîëåíèÿ // Ýëåêòðîñâÿçü. – 2021. – ¹ 10. – Ñ. 53–59.

13. Assaf M. Sample Clock Offset Compensation in the fifth-generation new radio Downlink / M. Assaf, O. G. Ponomarev // Journal of Physics: Conference Series. – 2021. –. V. 1889. – P. 222–233. https://doi.org/10.1088/1742-596/1889/2/022091.

14. Assaf M., Ponomarev O. G. Efficient and Low Complexity Frequency Synchronization in NR-5G Downlink // 2023 25th International Conference on Digital Signal Processing and its Applications (DSPA), Moscow, Russian Federation. – 2023. – P. 1–6. https://doi.org/10.1109/DSPA57594.2023.10113363.

15. McCormick M. M., Varghese T. An approach to unbiased subsample interpolation for motion tracking // Ultrasonic imaging. – 2013. – V. 35. – ¹. 2. – P. 76–89. https://doi.org/10.1177/0161734613476176.

16. ETSI TR 138 901 V16.1.0 Technical specification, Release 16 // European Telecommunications Standards Institute. – Sophia Antipolis, 2020. – URL: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173.

17. Dantas C. F., Castro D., Panazio C. M. On enhancing the pilot-aided sampling clock offset estimation of mobile OFDM systems // Journal of Communication and Information Systems. – 2016. – V. 31. – P. 108–117. https://doi.org/10.14209/jcis.2016.10.

For citation:

Assaf M., Ponomarev O.G. Time synchronization in the fifth-generation mobile radio system.

Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. ¹7. https://doi.org/10.30898/1684-1719.2023.7.10 (In Russian)