

DOI: https://doi.org/10.30898/1684-1719.2024.7.7 УДК: 621.391.825

ОЦЕНКА ВЛИЯНИЯ МАТЕРИАЛА ДИЭЛЕКТРИЧЕСКОЙ ПОДЛОЖКИ МОДАЛЬНОГО ФИЛЬТРА С ЭЛЕКТРОМАГНИТНЫМ ПОГЛОТИТЕЛЕМ НА РАЗНОСТЬ ПОГОННЫХ ЗАДЕРЖЕК МОД

М.С. Мурманский, Н.О. Кузьмин, Е.С. Жечев

Томский государственный университет систем управления и радиоэлектроники 634050, г. Томск, пр. Ленина, 40

Статья поступила в редакцию 24 апреля, 2024 г.

Аннотация. В статье представлены результаты оценки влияния материала диэлектрической подложки модальных фильтров С электромагнитным Проведены поглотителем разность погонных задержек мод. на электродинамический квазистатический И ВИДЫ анализа характеристик модального фильтра в диапазоне от 0 до 10 ГГц. Для оценки временных откликов на воздействие трапецеидального импульса малой длительности использованы *N*-нормы. Минимальное значение амплитуды выходного импульса составило 0.125 В для материала FSD220G и с длиной проводников 300 мм. Максимальное значение амплитуды выходного импульса составило 0.217 В для материала FR-4 и с длиной проводников 1000 мм. Максимальная разность задержек мод составила 3.577 нс для структуры с материалом FSD220G.

Ключевые слова: модальный фильтр, *N*-нормы, импульсы разложения, сверхширокополосный импульс, поглотитель, линии задержки.

Финансирование: Исследование выполнено при финансировании Российского научного фонда РНФ-37 №23-29-00486.

Автор для переписки: Мурманский Михаил Семенович, mihailmurmanskii@gmail.com

Введение

Для защиты электронных устройств от электромагнитных помех (ЭМП) применяются различные частотно селективные и помехозащитные устройства, такие как TVS-диоды и варисторы [1-4]. Один из основных минусов применения TVS-диодов и варисторов – возможность их несрабатывания при воздействии на электронные устройства импульсами малой длительности. К помехозащитным устройствам также относятся модальные фильтры (МФ), преимуществами которых является сильная связь между проводниками, позволяющая использовать модальные искажения для разложения импульса помехового импульса на два низкоамплитудных импульса, разнесенных во времени [5]. Основным недостатком МФ являются большие габариты и относительно небольшое затухание импульсов малой длительности [6-8]. Для устранения недостатков МФ применяют электромагнитный поглотитель (ЭП) [9, 10]. В [5] впервые предложен способ улучшения характеристик МФ с помощью электромагнитного поглотителя (ЭП), который демонстрирует значительное улучшение ослабления импульсов малой длительности. В [9] исследуется влияние электромагнитного поглотителя на целостность полезного сигнала в двухпроводной связанной линии передачи. Так же в [10] исследуется эффективность использования ЭП в структуре с модальным резервированием для улучшения характеристик помехоподавления этой структуры.

В известных работах по модальной фильтрации не оценивалось влияние материала подложки МФ с электромагнитным поглотителем на разность задержек мод [9, 10]. Таким образом цель работы – оценить влияние материала подложки МФ с электромагнитным поглотителем на разность погонных задержек мод.

2

1. Структура и методы

В качестве исследуемого объекта использован МФ из [5] с поперечным сечением и эквивалентной схемой, представленными на рис. 1 и рис. 2. В данном исследовании изменяется материал диэлектрической подложки и длина проводников МФ. В качестве используемых материалов выбраны: AD1000, FR-4, RO4350B и FSD220G. Эти материалы являются основными при проектировании CBЧ-устройств [12-15].

Рис. 1. Поперечное сечение исследуемой структуры.

Параметры поперечного сечения МФ: ширина проводника w = 0.5 мм, высота проводника t = 0.018 мм, расстояние между проводниками s = 0.15 мм, расстояние между парами d = 3 мм, высота диэлектрической подложки $h_1 = 0.5$ мм, длина проводников l = 1000,..., 300 мм с шагом 100 мм. Параметры используемых диэлектрических материалов AD1000 ($\varepsilon_r = 10.2$, tg $\delta = 0.018$), FR-4 ($\varepsilon_r = 4.3$, tg $\delta = 0.027$), RO4350B ($\varepsilon_r = 3.66$, tg $\delta = 0.023$), FSD 220G ($\varepsilon_r = 2.2$, tg $\delta = 0.008$). Параметры ЭП: h = 0.5 мм, $\varepsilon_r = 20$, $\mu = 3$ tg $\delta = 0.1$. На рис. 3 значения параметров используемого ЭП из [10].

Рис. 2. Эквивалентная схема включения.

Рис. 3. Значения параметров поглотителя в зависимости от частоты.

Используемая схема включения содержит в себе 7 пар проводников, находящихся на большом расстоянии друг от друга для достижения модального разложения. Номиналы используемых резисторов составили 50 Ω. Помеховое воздействие подается с источника *E*. В качестве воздействия использован трапецеидальный импульс с параметрами: время фронта, спада и нарастания по 300 пс. Форма импульса и его спектральная плотность напряжения представлены на рис.4.

Рис. 4. Форма воздействия (*a*) и его спектральная плотность напряжения (*б*). Для оценки временных откликов выполнен анализ *N*-норм. Их вычисление основано на применении математических операторов ко всей форме сигнала [16]. Краткое описание *N*-норм, приведено в таблице 1.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №7, 2024

N⁰	Формула	Название	Возможные повреждения
N_1	$\left U(t) \right _{\max}$	Пиковое (абсолютное) значение	Сбой схемы / электрический пробой / дуговые эффекты
N_2	$\left rac{\delta U(t)}{\delta t} ight $	Пиковая (абсолютная) производная	Искрение компонента / сбой схемы
<i>N</i> ₃	$\left\ \int_{0}^{t} U(t) \right\ _{max}$	Пиковый (абсолютный) импульс	Диэлектрический пробой (если R обозначает поле E)
N_4	$\int_{0}^{\infty} \left U(t) \right dt$	Выпрямленный общий импульс	Повреждение оборудования
N_5	$\left\{\int_{0}^{\infty}\left U\left(t\right)\right ^{2}dt\right\}^{2}$	Квадратный корень интеграла действия	Выгорание компонента

Таблица 1. Краткое описание *N*-норм.

2. Результаты квазистатического моделирования

В качестве среды моделирования использовано программное обеспечение Advanced Design System (ADS). На рис. 5 представлены результаты изменения длины проводников МФ в зависимости от Δτ, где Δτ – это разница между 10% уровнями сигналов первого и второго импульсов.

Рис. 5. Зависимость длины проводников от $\Delta \tau$.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №7, 2024

Из рис. 5 следует, что при использовании ЭП, модальное разложение достигается при минимальной длине проводников, которая составляет 300 мм для материалов FR-4, RO4350B, FSD220G. Однако минимальная длины проводников для материала AD1000 при которой достигается модальное разложение составила 500 мм. Показано, что разница между диэлектрической проницаемостью подложки и поглотителя составила 9.8. Это показывает то, что чем больше разница между диэлектрическими проницаемостями подложки и ЭП, тем лучше обеспечивается модальное разложение. На рис. 6 представлены временные отклики для МФ с диэлектрическим материалом FR-4 при длине проводников 1000 и 300 мм.

Рис. 6. Временные отклики в 2 порту для FR4 при различной длине проводников:1000 (-) и 300 мм (···).

Видно, что при уменьшении длины проводников с 1000 до 300 мм для FR-4 уменьшается время прихода первого импульса с 8.1 нс до 2.45 нс. Дополнительно, к этому видно, что максимальная амплитуда увеличивается на 0.7 В. Разница между пиками уменьшается с 3.257 до 0.99 нс. На рис. 7 представлены временные отклики для МФ с диэлектрическим материалом RO4350B при длине проводников 1000 и 300 мм.

6

Рис. 7. Временные отклики в 2 порту для RO4350В при различной длине проводников: 1000 (-) и 300 мм (···).

Видно, что время прихода первого импульса для материала RO4350В при уменьшении длины проводников с 1000 до 300 мм уменьшилось с 7.5 нс до 2.2 нс. Дополнительно к этому выявлено, что уменьшение длины проводников привело к возрастанию пикового значения первого импульса на 0.078 В. Разница между пиками уменьшается с 3.277 до 1.03 нс. На рис. 8 представлены временные отклики для МФ с диэлектрическим материалом AD1000 при длине проводников 1000 и 300 мм.

Рис. 8. Временные отклики в 2 порту для AD1000 при различной длине проводников: 1000 (-) и 300 мм (···).

Из рис. 8 видно, что время прихода первого импульса для материала AD1000 при уменьшении длины проводников с 1000 до 500 мм уменьшилось с 10.78 нс до 5.46 нс. Дополнительно к этому выявлено, что уменьшение длины проводников привело к возрастанию пикового значения первого импульса на

0.046 В. Разница между пиками уменьшается с 1.94 до 0.86 нс. На рис. 9 представлены временные отклики для МФ с диэлектрическим материалом FSD220G при длине проводников 1000 и 300 мм.

Рис. 9. Временные отклики в 2 порту для FSD220G при различной длине проводников: 1000 (-) и 300 мм (···).

Видно, что время прихода первого импульса для материала FSD220G при уменьшении длины проводников с 1000 до 500 мм уменьшилось с 6.1 нс до 1.5 нс. Дополнительно к этому выявлено, что уменьшение длины проводников привело к возрастанию пикового значения первого импульса на 0.083 В. Разница между пиками уменьшается с 3.27 до 0.94 нс. В таблице 2 представлены значения вычисленных *N*-норм для используемых материалов при крайних значениях длин проводников.

Материал	<i>l</i> ,мм	N_1	$N_2 \cdot 10^{-8}$	$N_3 \cdot 10^{10}$	$N_4 \cdot 10^{10}$	$N_5 \cdot 10^6$
Входное воздействие	-	1	0.3	6	6	2.236
A D 1000	1000	0.154	3.398	2.539	2.570	4.311
AD1000	500	0.2	5.466	2.73	2.741	5.468
	1000	0.147	3.094	2.584	2.684	4.151
ГК-4	300	0.217	5.869	2.953	2.954	5.806
DO4250D	1000	0.136	2.718	2.580	2.785	4.049
K04550D	300	0.212	5.392	2.955	2.956	5.723
	1000	0.125	2.256	2.647	3.166	4.071
FSD 220G	300	0.208	4.853	2.960	3.047	5.754

Таблица 2. Значения вычисленных *N*-норм.

Из табл. 2 видно, что уменьшение длины проводников приводит к увеличению значений *N*-норм для всех материалов. Так, например,

8

максимальное увеличение N_1 при уменьшении длины проводников составило 0.083 В. Дополнительно к этому видно, что максимальное увеличение значений N_2 составило для МФ с материалом RO4350B 1.98 раза. Наибольшее изменение N_3 составило 0.365 \cdot 10¹⁰ для материала FR-4. Максимальное изменение значений N_5 составило 0.674 для структуры с материалом RO4350B. Уменьшение длины проводников позволило уменьшить размеры структуры до 3.303 раз для МФ с материалом в виде FR-4, RO4350B, FSD220G и до 2 раз для МФ с материалом AD1000.

3. Результаты электродинамического моделирования

В качестве среды моделирования использовано программное обеспечение COMSOL MultiPhysics. На рис. 10 представлены результаты квазистатического и электродинамического моделирования для МФ с материалом FR-4 и длиной проводников 1000 и 300 мм.

Рис. 10. Временные отклики в 2 порту для FR-4 при длине проводников 1000 (–) и 300 мм (--) для квазистатики и 1000 (···), 300 мм(- - -) для электродинамики.

Из рис. 10 видно, что результаты квазистатического и электродинамического моделирования хорошо согласуются между собой. Дополнительно к этому видно, что первый импульс при длине проводников в 1000 и 300 мм приходит с одинаковым временем которое составляет 9.75 и 3 нс, соответственно. На рис. 11 представлены результаты электродинамического и

квазистатического моделирования для материала RO4350B с длинами проводников 1000 и 300 мм.

Рис. 11. Временные отклики в 2 порту для FSD220G при длине проводников 1000 (-) и 300 мм (--) для квазистатики и 1000 (···), 300 мм (- -) для электродинамики.

Из рис. 11 видно, что первый импульс при длине проводников в 1000 и 300 мм приходит с одинаковым временем которое составляет 7.3 и 2.5 нс, соответственно. На рис. 12 представлены результаты электродинамического и квазистатического моделирования для материала AD1000 с длинами проводников 1000 и 500 мм.

Рис. 12. Временные отклики в 2 порту для AD1000 при длине проводников 1000 (-) и 300 мм (--) для квазистатики и 1000 (···), 300 мм(- - -) для электродинамики.

Из рис. 12 видно, что первый импульс при длине проводников в 1000 и 300 мм приходит с временем которое составляет 12.8 и 4.5 нс, соответственно.

Так же из рис. 12 видно, что максимальная амплитуда импульса составляет 0.212 В. На рис. 13-16 показана частотная зависимость коэффициента передачи (|S₂₁|, дБ) для структур из материалов FR-4, RO4350B, FSD220G и AD1000. Все результаты получены с помощью электродинамического моделирования.

Рис. 13. Частотная зависимость $|S_{21}|$ для структуры с FR-4 при длине проводников 1000 (---) и 300 мм (-).

Рис. 14. Частотная зависимость $|S_{21}|$ для структуры с RO4350В при длине проводников 1000 (---) и 300 мм (-).

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №7, 2024</u>

Рис. 15. Частотная зависимость $|S_{21}|$ для структуры с FSD220G при длине проводников 1000 (---) и 300 мм (-).

Рис. 16. Частотная зависимость $|S_{21}|$ для структуры с AD1000 при длине проводников 1000 (---) и 500 мм (-).

Из рис. 13-16, видно, что увеличение длины приводит к возрастанию ослабления на высоких частотах. Так же видно, что максимальное ослабление составляет 137 дБ для структуры с материалом AD1000 при длине проводников 1000 мм. Минимальное ослабление на высоких частотах при длине проводников 300 мм составило 85.1 дБ.

Заключение

Применение ЭП, позволяет уменьшить габариты до 3.303 раз для МФ с материалом в виде FR-4, RO4350B, FSD220G и до 2 раз для МФ с материалом AD1000 при не значительных потерях в помехоподавлении. Максимальное увеличение амплитуды импульсов составило 0.086 В для материала FSD220G.

Минимальное возрастание амплитуды импульса составило 0.046 В для материала AD1000. Результаты квазистатического и электродинамического моделирования хорошо согласуются между собой.

С точки зрения *N*-норм, максимальное увеличение N1 при уменьшении длины проводников составило 0.083 В. Максимальное увеличение значений N2 составило для МФ с материалом RO4350B 1.98 раза. Наибольшее изменение N3 составило $0.365 \cdot 10^{10}$ для материала FR-4. Максимальное изменение значений N5 составило 0.674 для структуры с материалом RO4350B. Уменьшение длины проводников позволило уменьшить размеры структуры до 3.303 раз для МФ с материалом в виде FR-4, RO4350B, FSD220G и до 2 раз для МФ с материалом AD1000.

Максимальная амплитуда импульсов при уменьшении длины проводников для материалов FR-4, RO4350B, FSD220G и AD1000 составила 0.217, 0.212, 0.208 и 0.212 B, соответственно.

Финансирование: Исследование выполнено при финансировании Российского научного фонда РНФ-37 №23-29-00486.

Литература

- Maghlakelidze G. et al. Effect of RF signals on TVS diode trigger voltage for ESD protection //2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). – IEEE, 2020. – C. 194-199.
- Damnjanović M., Babković K., Kisić M. EMI and EMC in Electronics Course at the FTS, University of Novi Sad //2023 22nd International Symposium on Power Electronics (Ee). – IEEE, 2023. – T. 1. – C. 01-06.
- Gao Y. et al. Investigation of the Filter Amplifiers using the TVS Diode for ESD Protection //2019 8th International Symposium on Next Generation Electronics (ISNE). – IEEE, 2019. – C. 1-3.

- 4. Staikos E.T., Tsovilis T.E. Low-frequency response of low-voltage metal-oxide varistors used for telecommunication systems protection //2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. C. 1-4.
- Zhechev Y.S. et al. Routing Technique for Microwave Transmission Lines to Ensure UWB Interference Immunity //IEEE Transactions on Microwave Theory and Techniques. – 2023. – C. 5304-5316.
- Zhechev Y., Zabolotsky A. The use of quarter-wave resonators to improve modal filters performance //2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). – IEEE, 2021. – C. 204-207.
- Sagiyeva I.Y., Kenzhegulova Z.M., Surovtsev R.S. Analytical Models for the Time Response of a Modal Filter Having a Symmetrical Pair of Passive Conductors with Grounded Ends //2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). – IEEE, 2022. – C. 1080-1084.
- Samoylichenko M.A., Gazizov T.R. Optimization of a Modal Filter Realized on a Double-Sided Printed Circuit Board //2022 International Ural Conference on Electrical Power Engineering (UralCon). – IEEE, 2022. – C. 185-189.
- 9. Tirkey M.M., Gupta N. The quest for perfect electromagnetic absorber: a review //International Journal of Microwave and Wireless Technologies. 2019. T. 11. №. 2. C. 151-167.
- Zhechev Y.S., Adnan A.H., Malygin K.P. New technique for improving modal filter performance by using an electromagnetic absorber //IEEE Access. – 2022. – T. 10. – C. 86663-86670.
- Ivantsov I.A., Kalashnikov Y.V., Zhechev Y.S. The Influence of Electromagnetic Absorber on Crosstalk and Signal Integrity of Coupled Transmission Lines //2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE). – IEEE, 2023. – C. 710-713.

- Das P., Mandal K. An All-Dielectric FSS Inspired Reconfigurable Band-stop Filter //2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI). – IEEE, 2020. – C. 1-6.
- Bielik T., Adamec B., Hottmar V. Determination of FR-4 dielectric constant for design of microstrip band-stop filter purposes //2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA). – IEEE, 2019. – C. 1-6.
- Mondal S. et al. Multi-frequency miniaturized RF components using hybrid substrates //2021 IEEE 71st Electronic Components and Technology Conference (ECTC). – IEEE, 2021. – C. 191-196.
- 15. Zhou P. et al. Differentially Fed Linear Antenna Array with Wideband Commonmode Absorption //2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). – IEEE, 2021. – C. 275-276.
- 16. Baum C. E. Norms and eigenvector norms //Mathematics Notes. 1979. T. 63. C. 1-42.

Для цитирования:

Мурманский М.С., Кузьмин Н.О., Жечев Е.С. Оценка влияния материала подложки модального фильтра с электромагнитным поглотителем на разность погонных задержек мод. // Журнал радиоэлектроники. – 2024. – №.7. https://doi.org/10.30898/1684-1719.2024.7.7