

DOI: https://doi.org/10.30898/1684-1719.2024.7.8 УДК: 621.372

# ПОЛОСКОВЫЙ РЕЗОНАТОР СВЧ С ОБЪЕМНЫМ КРИСТАЛЛОМ: ЭКСПЕРИМЕНТАЛЬНЫЕ ХАРАКТЕРИСТИКИ И ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ

А.А. Арутюнян, Н.Д. Малютин

Томский государственный университет систем управления и радиоэлектроники (ТУСУР) 634050, г. Томск, пр. Ленина, 40

Статья поступила в редакцию 25 апреля 2024 г.

Аннотация. В работе приведены результаты экспериментальных исследований и моделирования частотных характеристик резонатора в виде двух полосковых вибраторов, разделенных большим зазором и перекрытых объемным кристаллом ниобата лития, на верхней поверхности которого установлен металлический электрод с плавающим потенциалом. При проведении эксперимента измерялись частотные зависимости коэффициентов матрицы рассеяния в диапазоне 3 ГГц. Электродинамический анализ частот проводился среде ДО В численного моделирования COMSOL Multiphysics. Проведено сравнение экспериментальных И численных результатов, показавших хорошее качественное совпадение коэффициентов передачи и коэффициентов отражения. Получены резонансные колебания на двух или трех частотах в зависимости от расположения и ориентации кристалла. Установлено, что на первой резонансной частоте электрод выполняет функцию экрана. Отсутствие электрода приводит к исчезновению добротных резонансов. Проведенное моделирование в COMSOL позволило оценить эффективную диэлектрическую проницаемость резонатора, соответствующую значениям резонансных частот. Расчет электромагнитных

полей дал возможность установить типы волн, соответствующих резонансным частотам. Знание типа волн и оценка относительной диэлектрической проницаемости позволили построить алгоритм уточняющей итерационной значений эффективной процедуры расчета резонансных частот И диэлектрической проницаемости резонатора. Показана возможность использования резонаторов в качестве однозвенных полосно-пропускающих фильтров с полосой пропускания около 1%, вносимыми потерями -1,1 дБ и минимальными возвратными потерями –28 дБ на центральной частоте.

Ключевые слова: резонатор, полосковые линии, объемный кристалл, ниобат лития, частотные характеристики, полосно-пропускающий фильтр, экспериментальные характеристики, моделирование.

Финансирование: Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках проекта № FEWM-2023-0014 от 16.01.23.

Автор для переписки: Арутюнян Артуш Арсенович, arutyunyan18@mail.ru

## Введение

При измерении параметров диэлектрических материалов часто находят применение полосковые линии и полосковые резонаторы (ПР) благодаря их полезным особенностям: открытый доступ к поверхности токонесущего проводника; несложная технология изготовления; развитость методов расчета параметров и наличие программ для ЭВМ, реализующих эти методы [1-5]. Так в работе [1] рассмотрено использование микрополосковых резонаторов для исследования диэлектрических свойств жидких кристаллов в СВЧ диапазоне. В работах [2, 3] ПР применены для измерений  $\varepsilon_r$  и tgб листовых диэлектрических материалов. В публикациях [4, 5] рассмотрена оценка диэлектрической проницаемости объемных кристаллов ниобата лития и других материалов в диапазоне до 25 ГГц. В этих работах отмечается, что измерение полной фазы коэффициента передачи отрезков полосковых линий с объемными кристаллами,

необходимой для расчета относительной диэлектрической проницаемости, оказалось проблематично по причине большого числа возникающих резонансов. В работе [5] показано, что определение относительной диэлектрической проницаемости є, кристаллов дифосфида цинка германия, кварц, ниобата лития и КТР путем измерения полного фазового сдвига не соответствует физическому представлению полосковой структуры как линии передачи с некоторой эффективной диэлектрической проницаемостью. Отмечается, что определяемая  $\arg[S_{21}(f)]$ экспериментально функция не периодическая вследствие интерференции большого возбуждаемых собственных числа волн. Фаза, определяемая как  $\arg[S_{21}(f)]$ , не достигая значения ±180 град, т.е. точки разрыва функции  $\arg[S_{21}(f)]$ , хаотично изменяется с частотой пересекая условный ноль. В результате, согласно используемому алгоритму определения полной фазы, каждое такое пересечение сопровождается добавлением к фазовому сдвигу -360 град, которого на самом деле физически нет. Таким образом, наличие интерференции сложного состава собственных волн и возникновение квази-хаотических колебаний является препятствием для определения относительной диэлектрической проницаемости исследуемых материалов.

Поэтому была поставлена цель разреживания спектра собственных колебаний в полосковой структуре и использование выделяемых резонансов для оценки эффективной диэлектрической проницаемости полосковой структуры и относительной диэлектрической проницаемости объемных кристаллов на СВЧ. В стремлении решить эту задачу авторы данной статьи изменили условия взаимодействия полосковой структуры и кристалла. В данной работе сообщается о разработке, исследовании и моделировании резонатора, содержащего два соосных отрезка полосковых линий на диэлектрической подложке, разделенных зазором и являющихся электрическими вибраторами. Со стороны входа вибратор является возбудителем, а со стороны выхода вибратор служит

приемником электромагнитной волны, распространяющейся в системе «полосковая линия-кристалл».

# 1. Конструкция резонатора

Резонатор состоит из полоскового модуля, показанного на рис. 1(*a*), и устанавливаемого на нем кристалла ниобата лития (рис. 1(*б*)). Токопроводящая полоска полоскового модуля шириной 3 мм на подложке толщиной 1,5 мм из материала FR4 была разделена на две части зазором 12 мм.



Рис. 1. Полосковый модуль резонатора; цветом выделено положение кристалла на поверхности платы модуля с размерами боковой поверхности в плоскости XZ. а) схема полоскового резонатора; б) размеры кристалла ниобата лития.

Боковые экраны отделены от токопроводящей полоски зазором 2 мм и соединены с заземленным основанием металлизированными отверстиями, что приводит к концентрации электрического поля в области, ограниченной в подложке расстоянием между краями полоскового проводника и частью боковых экранов до первого ряда металлизированных отверстий, расположенных ближе к краям токонесущей полоски. Кристалл ниобата лития имел размеры, показанные на рис.  $1(\delta)$ . Кристалл устанавливался на поверхность подложки со стороны полоски и боковых экранов симметрично относительно

входного и выходного коаксиально-полосковых переходов. На кристалле сверху располагался электрод, находящийся под плавающим потенциалом, поскольку он не имеет контакта с металлизированным основанием полоскового модуля. Предполагалось, что наличие электрода позволит управлять параметрами резонаторов путем их шунтирования на внешний экран или заземляемое основание полоскового модуля по аналогии с полосковыми структурами на с неуравновешенной электромагнитной связью [6]. связанных линиях Исследовалось несколько вариантов исполнения резонатора, отличающихся расположением кристалла на поверхности полоскового модуля на плоскостях ХҮ, ХΖ, ҮΖ, а также ориентацией кристалла по осям Ζ, Υ, Х с целью анизотропности диэлектрических исследования влияния свойств на характеристики резонатора. На рис. 2 показан внешний вид конструкции резонатора без электрода (рис. 2(a)) и с электродом на верхней плоскости (рис. 2(б)). Кристалл, устанавливаемый на полосковый модуль, фиксировался механическим прижимным устройством.



Рис. 2. Полосковый резонатор с объемным кристаллом ниобата лития: 1 – коаксиально-полосковые переходы; 2 – отрезки полосковых линий;
3 – вибратор-возбудитель; 4 – вибратор-приемник; 5 – кристалл ниоабата лития; 6 – боковые экраны, соединенные металлизированными отверстиями с заземляющим основанием; 7 – металлический электрод с плавающим потенциалом. а) кристалл без электрода; б) кристалл с электродом на верхней плоскости XZ.

## 2. Экспериментальное исследование частотных характеристик

Измерения проводились на двухпортовом векторном анализаторе цепей (ВАЦ) Р4226 производства АО НПФ «Микран» по стандартной схеме (рис. 3). Полосковый модуль подключался к ВАЦ с помощью фазостабильных коаксиальных кабелей КСФ26-13PH-13H-700. Порт 1 соединялся через кабель, коаксиально-полосковый переход и короткий отрезок полосовой линии с вибратором-возбудителем, а порт 2 симметричным образом – с вибратором-приемником. В процессе измерений определялась полная матрица коэффициентов рассеяния  $S_{11}$ ,  $S_{12}$ ,  $S_{22}$ ,  $S_{21}$ .



Рис. 3. Схема измерения полоскового резонатора.

Проведены измерения частотных характеристик полоскового модуля без кристалла. В диапазоне частот от 1 до 3 ГГц получены значения  $[S_{11}] \le -0.4$  дБ, коэффициент передачи изменяется с ростом частоты в пределах  $[S_{21}] = (-67, 8... - 38, 8)$  дБ. При этом выполнилось условие  $S_{22} = S_{11}, S_{12} = S_{21}$ до погрешностей измерения. Эти результаты измерения с точностью свидетельствуют об отсутствии сколь-либо значимого излучения вибратором-возбудителем, электромагнитного поля a также влияния электромагнитной связи между полосками вибраторов, разделенных большим зазором.

Для проведения измерений резонатора в сборе на подложку полоскового модуля устанавливался кристалл с экраном (рис.  $2(\delta)$ ) симметрично относительно коаксиально-полосковых переходов и токоненесущих полосок, как

показано на рис. 1(*a*) и на рис. 2. Измерены частотные характеристики в шести вариантах расположения кристалла на плоскостях XY,  $\overline{XY}$ , XZ,  $\overline{XZ}$ , YZ,  $\overline{YZ}$ . В обозначениях плоскостей индекс с чертой сверху означает, что кристалл перевернут на противоположную плоскость (см. рис. 3). На рис. 4 показана зависимость частотных характеристик  $|S_{11}|$  и  $|S_{21}|$  резонатора от положения кристалла. Цель измерений состояла в изучении влияния ориентации кристалла на спектр резонансных частот.



Рис. 4. Экспериментальные результаты частотной зависимости  $|S_{11}|$  и  $|S_{21}|$  резонаторов с разным расположением кристалла.

Экспериментальные результаты частотных зависимостей  $|S_{11}|$  и  $|S_{21}|$  от названного фактора показаны на рис. 4(*a-e*). Из графиков можно видеть, что при расположении на плоскости ХҮ в диапазоне частот 1.8-3 ГГц наблюдается 3 резонанса, причем высокочастотный (третий) резонанс характеризуется максимальным значением коэффициента передачи  $|S_{21}|$  и минимальным коэффициентом отражения  $|S_{11}|$ . Поворот кристалла на 180° по оси Z (рис. 3(*a-б*)) качественно не изменил частотные зависимости  $|S_{11}|$  и  $|S_{21}|$ . В положении кристалла ХҮ получен коэффициент отражения  $|S_{11}| = -34$  дБ. Установка кристалла на плоскостях с индексами XZ,  $\overline{XZ}$ , YZ,  $\overline{YZ}$  привела к образованию только двух явным образом выраженных резонансов. Наилучшее согласование  $|S_{11}| = -28$  дБ получено при положении кристалла  $\overline{XZ}$ . Были определены частоты первых резонансов  $f_1$ , значение коэффициента отражения и коэффициента передачи  $|S_{21}|$  на  $f_1$ , добротность Q и полоса пропускания  $\Delta f$ резонатора. Эти сведения приведены в таблице 1.

Таблица 1. Экспериментальные результаты определения параметров резонаторов при разном расположении кристалла.

| Параметр                     | Расположение кристалла |                            |        |                  |        |        |
|------------------------------|------------------------|----------------------------|--------|------------------|--------|--------|
| mpmmp                        | XY                     | $\overline{X}\overline{Y}$ | XZ     | $\bar{X}\bar{Z}$ | YZ     | Ϋ́Z    |
| Частота                      |                        |                            |        |                  |        |        |
| первого                      | 2 0276                 | 2.042                      | 2 1606 | 2 1716           | 2.001c | 1.0056 |
| резонанса                    | 2,0270                 | 2,042                      | 2,1090 | 2,1710           | 2,0010 | 1,9930 |
| $f_1, \Gamma \Gamma$ ц       |                        |                            |        |                  |        |        |
| <i>S</i> <sub>11</sub>  , дБ | -11,2                  | -7,7                       | -15,1  | -28,6            | -17,6  | -20,3  |
| <i>S</i> <sub>21</sub>  , дБ | -3,3                   | -3,7                       | -1     | -1               | -0,7   | -1,2   |
| Q                            | 79,2                   | 65,4                       | 58,0   | 90,4             | 83,4   | 113,3  |
| $\Delta f, \%$               | 1,26                   | 1,52                       | 1,11   | 1,1              | 1,20   | 0,88   |

Из таблицы видно, что на частоте первого резонанса  $f_1$  наилучшее согласование получено в положении  $\overline{XZ}$ , минимальные потери соответствуют варианту размещения YZ. Полоса частот составляет (1,10...1,2) %.

Как видно из рис. 4 и таблицы 1, при смене положения кристалла частотные зависимости  $|S_{11}|$  и  $|S_{21}|$  значительно изменяются. Вероятно, это связано с несколькими факторами. Первый из них – анизотропия кристалла, приводящая к изменению эффективной диэлектрической проницаемости кристалла вследствие изменения его положения и ориентации относительно источника электромагнитно поля. Анизотропия кристалла сказывается на параметрах резонатора, т.к. при расположении его на разных боковых вибраторы поверхностях полосковые оказываются В различающейся среде. В силу объемности кристалла эффективная диэлектрической диэлектрическая проницаемость определяется составляющими  $\epsilon_{11}, \epsilon_{22}, \epsilon_{33}$ [7-10] с разными весовыми коэффициентами, зависящими от положения кристалла. Второй фактор – изменение размеров перекрытия области возбуждения кристалла полосковым вибратором. Следует также отметить фактор неточности установки кристалла по отношению к полосковым вибраторам.



Рис. 5. 3D-модель резонатора.

## 3. Моделирование резонатора в среде COMSOL

Моделирование резонатора проведено с помощью программы численного моделирования COMSOL Multiphysics. Исходная 3D-модель показана на рис. 5, ее размеры соответствуют размерам полоскового модуля и кристалла, показанным на рис. 1.

Объектом электродинамического моделирования был взят резонатор с индексом расположения кристалла  $\overline{X}\overline{Z}$ . В процессе моделирования проведен частотной зависимости *S*-параметров расчет И напряженности электромагнитного поля Е на дорезонансной частоте, на первой и второй частотах. Поскольку значения резонансных точные диэлектрических проницаемостей кристалла  $\epsilon_{11}, \epsilon_{33}$  не были известны, проведены расчеты частотной зависимости  $|S_{11}|$  и  $|S_{21}|$  при разных значениях относительной диэлектрической проницаемости ε<sub>r</sub> объемного кристалла. Первое приближение  $\varepsilon_r$  было взято в диапазоне между диэлектрическими проницаемостями  $\varepsilon_{11} = 42$ , ε<sub>33</sub> = 26 из работ [7-10] для частоты 2 ГГц. Наилучшее совпадение результатов моделирования и эксперимента было получено при  $\varepsilon_r = 27$ .



Рис. 6. Частотные зависимости измеренных и рассчитанных коэффициентов передачи  $|S_{21}|$  и коэффициентов отражения  $|S_{11}|$  резонатора с индексом  $\overline{X}\overline{Z}$ .

На рис. 6 приведено сравнение результатов эксперимента и моделирования коэффициента передачи  $|S_{21}|$  и коэффициента отражения  $|S_{11}|$  резонатора с индексом  $\overline{X}\overline{Z}$ . Наблюдается отклонение расчетной резонансной частоты  $f_1$  от экспериментального значения на 4,5%, частотные зависимости  $|S_{21}|$  и  $|S_{11}|$ повторяют особенности экспериментальных характеристик.

Результаты электродинамического моделирования резонатора с индексом расположения кристалла  $\overline{XZ}$  показаны на рис. 7(*a*-*s*). Моделирование на слое модели расположения вибраторов проведено на дорезонансной частоте 1,5731 ГГц (рис. 7(*a*)), на частоте первого резонанса 2,1623 ГГц (рис. 7(*b*)), на частоте между первым и вторым резонансом 2,4188 ГГц (рис. 7(*b*)) и на второй резонансной частоте 2,5832 ГГц (рис. 7(*b*)). Показанные картины напряженности электрического поля иллюстрируют возникновение резонанса с картиной поля, отличающейся от картины поля четвертьволнового резонанса (рис. 7(*a*, *b*)), характерной для полоскового четвертьволнового вибратора в однородной среде. Это связано с сильным влиянием объемного кристалла на отбор энергии вибратора-возбудителя колебаний и передачу энергии в вибратор-приемник через кристалл.

Интересный механизм передачи-приема энергии в системе вибраторыкристалл наблюдается на второй резонансной частоте 2,5832 ГГц (рис. 7(*в*, *г*)). На частоте второго резонанса в пространстве зазора образовалась область эффективной передачи энергии при взаимодействии вибраторов и среды в виде кристалла с высокой диэлектрической проницаемостью.

Результаты моделирования нормированной напряженности электрического поля на первой резонансной частоте в слое модели, соответствующем внешней поверхности электрода, показаны на рис. 7*д*, а с внутренней стороны – на рис. 7*(ж)*. На рис. 7*(е, 3)* показаны напряженности электрических полей на внешней и внутренней поверхностях электрода на второй резонансной частоте.

Анализируя рис.  $7(\partial)$  можно сделать вывод, что электрод на частоте первого резонанса выполняет функцию заземленного экрана с почти нулевым потенциалом. С ростом частоты (рис. 7(e)) возникает возбуждение периметра электрода, хотя все еще эффект экранирования сохраняется.



Рис. 7. Результаты моделирования нормированной напряженности электрического поля резонатора с индексом  $\overline{X}\overline{Z}$  в слое модели расположения вибраторов (*a*-*г*), в слое модели, соответствующем внешней поверхности электрода (*d*, *ж*) и в слое внутренней поверхности электрода с плавающим потенциалом.

Результаты расчета напряженности электрического поля в продольном сечении полоскового резонатора посередине полосок вибраторов показаны на рис. 8.



Рис. 8. Нормированная напряженность электрического поля в продольном сечении резонатора с индексом  $\overline{XZ}$  на первой и второй резонансных частотах.

# 4. Экстракция параметров диэлектрического резонатора

Известно [11, 12], что спектр частот собственных колебаний диэлектрических резонаторов в виде прямоугольного параллелепипеда находят по формуле (1)

$$f_{pes} = \sqrt{\left(\frac{m \cdot \pi}{A}\right)^2 + \left(\frac{n \cdot \pi}{B}\right)^2 + \left(\frac{\delta \cdot \pi}{L}\right)^2} \cdot \frac{c}{2 \cdot \pi \cdot \sqrt{\varepsilon_r}}, \qquad (1)$$

где  $m, n, \delta$  – целые числа соответствующие колебаниям  $TE_{nm\delta}$ ; A, B, L – размеры диэлектрика (см. рис. 1); c – скорость света;  $\varepsilon_r$  – относительная диэлектрическая проницаемость материала резонатора. Размеры кристалла были взяты в соответствии с рис. 1: A = 0,016, B = 0,019, L = 0,038 м.

Проблема расчета  $f_{mn\delta}$  заключается в том, что в нашем случае относительная диэлектрическая проницаемость  $\varepsilon_r$  неизвестна. Знание экспериментальных резонансных частот  $f_{1,exp}$  и  $f_{2,exp}$  в рассматриваемом случае

также недостаточно чтобы определить  $\varepsilon_r$ . Проведенное моделирование в COMSOL позволило путем подбора определить по значениям  $f_{1,exp}$  и  $f_{2,exp}$  величину  $\varepsilon_r \approx 27$ . При этом расчет полей показал, что для  $f_{1,exp}$  наблюдается картина поля, близкая к  $TE_{012}$ , а на частоте  $f_{2,exp} - TE_{112}$ . Это предположение и знание примерной  $\varepsilon_r$  позволило построить итерационную процедуру расчета значений  $f_{1,sim}$ ,  $f_{2,sim}$  и эффективной диэлектрической проницаемости резонатора  $\varepsilon_{ef,sim}$  при моделировании (индекс *sim*). Такая постановка задачи нахождения  $\varepsilon_{ef,sim}$  вызвана тем, что объемный кристалл не находится в состоянии "чистых" свободных колебаний, т.к. снизу граничные условия определяются полосковыми линиями передачи и диэлектриком подложки, а сверху металлической пластиной с плавающим потенциалом.

Введем матрицу, отражающую тип колебаний на двух частотах резонанса (см. рис. 6)

$$nm\delta = \begin{bmatrix} n_1 & m_1 & \delta_1 \\ n_2 & m_2 & \delta_2 \end{bmatrix},\tag{2}$$

где  $n_1,...,\delta_2$  имеют целочисленные значения, вообще говоря, не известные, их необходимо найти. Матрица экспериментально измеренных частот резонанса известна  $F_{\exp} = \begin{bmatrix} f_{1\exp} \\ f_{2\exp} \end{bmatrix}$ .

Зададим цикл по i = 1, 2, привязанный к первой и второй строке матрицы  $nm\delta$  по i, а индекс j = 1, 2, 3 – соответственно к  $n_1, m_1, \delta_1$  или  $n_2, m_2, \delta_2$ . Варьируя сочетание  $n, m, \delta$ , получим тот или иной тип колебаний. Как уже отмечалось,  $n, m, \delta$  могут быть определены из анализа картины электромагнитного поля в резонаторе, рассчитанной на  $f_{sim1}$  и  $f_{sim2}$  в системе Comsol (см. рис. 7 и рис. 8) или путем случайного перебора.

Снабдим индексом і коэффициенты

$$\beta x_{i,1} = \frac{nm\delta_{i,1} \cdot \pi}{A}, \ \beta y_{i,2} = \frac{nm\delta_{i,2} \cdot \pi}{B}, \ \beta z_{i,3} = \frac{nm\delta_{i,3} \cdot \pi}{L}$$

Тогда частоты собственных колебаний  $f_{sim}$  с номерами i = 1, 2 будут определяться в соответствии с (3)

$$f_{sim,i} = \sqrt{\beta x_{i,1}^{2} + \beta y_{i,2}^{2} + \beta z_{i,3}^{2}} \cdot \frac{c}{2 \cdot \pi \cdot \sqrt{\varepsilon_{ri}}},$$
(3)

где ε<sub>r,i</sub> – изначально задаваемая относительная диэлектрическая проницаемость для *i* -того типа колебаний. Зная *f*<sub>exp,i</sub> можно найти эффективную диэлектрическую проницаемость резонатора (4)

$$\varepsilon_{ef,i} = \frac{c^2 \cdot (\beta x_{i,1}^2 + \beta y_{i,2}^2 + \beta z_{i,3}^2)}{4 \cdot \pi^2 \cdot f_{\exp,i}^2}.$$
(4)

Поскольку приближение  $\varepsilon_{3\phi i}$  найдено, определим приближенно собственные (резонансные) частоты (5)

$$f_{sim,i} = \sqrt{\beta x_{i,1}^{2} + \beta y_{i,2}^{2} + \beta z_{i,3}^{2}} \cdot \frac{c}{2 \cdot \pi \cdot \sqrt{\varepsilon_{ef,i}}}.$$
 (5)

Выражение (5) позволяет избежать трудностей вычисления корня квадратного из матрицы  $\varepsilon_{ef,i}$ , возникающих если бы диэлектрическая проницаемость задавалась матрицей.

Условия истинности вычисления  $\varepsilon_{ef,i}$  состоят в одновременном совпадении экспериментально определенных частот и рассчитанных частот при значениях эффективной диэлектрической проницаемости, максимально близких к данным, полученным в результате электродинамического моделирования

$$\left|f_{exp,i} - f_{sim,i}\right| \le \Delta 1,\tag{6}$$

$$\left|\varepsilon_{r,i} - \varepsilon_{ef,i}\right| \le \Delta 2\,,\tag{7}$$

где  $\Delta 1$  и  $\Delta 2$  – погрешности вычисления частот  $f_{sim,i}$  и  $\varepsilon_{ef,i}$ .

Шаг 1. Из анализа картины электрических полей (рис. 7, 8) сделан вывод, что

$$nm\delta = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}.$$
(8)

Вначале вычислений было взято  $\varepsilon_{r,i} = \begin{bmatrix} 27 \\ 27 \end{bmatrix}$ .

При таких значениях индексов типов волн и диэлектрической проницаемости  $\varepsilon_{r,i}$  получены резонансные частота  $f_{sim,i} = \begin{bmatrix} 2,1487 \cdot 10^9 \\ 2,8057 \cdot 10^9 \end{bmatrix}$ . Разница между резонансными частотами, полученными в результате эксперимента и расчета составила  $\Delta 1 = |f_{exp,i} - f_{sim,i}| = \begin{bmatrix} 1,4525 \cdot 10^7 \\ -2,2251 \cdot 10^8 \end{bmatrix}$ . Далее выполнен расчет  $\varepsilon_{ef,i}$  по формуле (4) с использованием экспериментально

полученных значений резонансных частот  $f_{exp,i}$ . Получены значения эффективной диэлектрической проницаемости на первом шаге вычислений

$$\varepsilon_{1,ef,i} = \begin{bmatrix} 26,6386\\ 31,8518 \end{bmatrix}$$
 и погрешность вычислений  $\Delta 2 = \begin{bmatrix} 0,3614\\ 4,8518 \end{bmatrix}$ .

Шаг 2. Как видно, эффективная диэлектрическая проницаемость для второго типа колебаний значительно отличается от первоначально взятой  $\varepsilon_{r,i}$ при моделировании. Поэтому на втором шаге в качестве диэлектрических проницаемостей в формуле (5) взяты  $\varepsilon_{1,ef,i}$ , полученные на первом шаге. Подставив значение  $\varepsilon_{1,ef,i}$  в выражение (5), получим значения резонансных

частот 
$$f_{sim,i} = \begin{bmatrix} 2,1632 \cdot 10^9 \\ 2,5832 \cdot 10^9 \end{bmatrix}$$
 и погрешность  $\Delta 1 = |f_{exp,i} - f_{sim,i}| = \begin{bmatrix} 1,4114 \cdot 10^3 \\ 1,3369 \cdot 10^3 \end{bmatrix}$ .  
Заменив  $f_{exp,i}$  на  $f_{sim,i}$  в выражении (4), получаем эффективную диэлектрическую проницаемость  $\varepsilon_{2,ef,i} = \begin{bmatrix} 26,6386 \\ 31,8518 \end{bmatrix}$  и погрешность

$$\Delta 2 = \left| \varepsilon_{1,ef,i} - \varepsilon_{2,ef,i} \right| = \begin{bmatrix} 3,4762 \cdot 10^{-5} \\ 3,2968 \cdot 10^{-5} \end{bmatrix}.$$
 Таким образом одновременно

минимизированы ошибки вычисления резонансных частот и эффективной проницаемости, а также определены типы колебаний на основе проведенного электродинамического моделирования. Абсолютные погрешности определения искомых параметров не более  $\Delta 1$ ,  $\Delta 2 \le 10^{-4}$ .

Итак, примененная итерационная процедура позволяет проводить экстракцию эффективной диэлектрической проницаемости полосковых резонаторов СВЧ с объемными кристаллами по критерию минимальной погрешности.

## 5. Применение резонаторов

Применение резонаторов в составе аппаратуры, вероятно, потребует проведения оценки влияния внешних экранов, изменения параметров резонатора без электрода с плавающим потенциалом, температурной зависимости на характеристики и др.



Рис. 9. Частотные зависимости измеренных и рассчитанных коэффициентов передачи  $|S_{21}|$  и коэффициентов отражения  $|S_{11}|$  резонатора с индексом  $\overline{X}\overline{Z}$  без электрода.

Был проведен эксперимент по выявлению критичности от изменения параметров рассматриваемой конструкции резонаторов. Положение и ориентация кристалла, как было показано (см. рис. 7), не являются критическими для получения резонансов. Во всех вариантах получается звено полосно-пропускающего типа с узкой полосой пропускания порядка 1...1,5 %.

Исследовалось влияние электрода из меди, располагаемого на верхней поверхности кристалла. Экспериментальные и рассчитанные частотные зависимости  $|S_{11}|$  и  $|S_{21}|$  резонатора без электрода показаны на рис. 9. Как видно из рис. 9 на резонансных частотах максимальный коэффициент передачи  $|S_{21}| \approx -15$  дБ,  $|S_{11}| \approx -1...-2$  дБ, что означает потерю основной функции устройства. Таким образом, наличие верхнего электрода с плавающим потенциалом оказалось критичным. Использование электрода для управления параметрами резонаторов без изменения представленной конструкции остается под вопросом, т.к. электрод на частоте первого резонанса выполняет функцию заземленного экрана с почти нулевым потенциалом.

Для решения практической задачи построения полосно-пропускающего фильтра наиболее целесообразно использовать третий резонанс при размещении кристалла с индексом XY, если по условиям технических требований допускаются первый и второй резонанс. Если же требуется обеспечивать полосу частот от 1 до 2,5 ГГц, тогда в наибольшей степени подходит звено фильтра с индексом  $\overline{XZ}$ .

## Заключение

В ходе работы были получены экспериментальные частотные характеристики резонаторов, отличающихся расположением и ориентацией кристалла ниобата лития на поверхности полоскового модуля в диапазоне частот до 3 ГГц. Показано, что на основе исследованной конструкции могут быть построены звенья полосно-пропускающих фильтров. Наличие на поверхности металлического электрода является обязательным атрибутом конструкции для

получения приемлемого коэффициента передачи и коэффициента отражения на резонансных частотах. Проведенное моделирование в системе COMSOL подтвердило физические свойства и достижимые границы параметров, хотя предложенная модель требует детализации. Тем не менее, при сравнении экспериментальных данных и результатов расчета на модели в COMSOL, получено хорошее совпадение резонансных частот, минимальных значений коэффициентов отражения  $|S_{11}|$  и максимальных величин коэффициентов передачи  $|S_{21}|$ .

В предложенной конструкции резонатора получено разреживание спектра резонансных частот в полосковой структуре. Использование выделяемых резонансов позволило оценить диэлектрическую проницаемость объемных кристаллов на СВЧ по экспериментально полученным резонансным частотам.

Финансирование: Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках проекта № FEWM-2023-0014 от 16.01.23.

## Литература

- Беляев Б.А., Дрокин Н.А., Шабанов В.Ф. Резонансные датчики для измерения диэлектрических спектров жидких кристаллов в широком диапазоне частот // Приборы и техника эксперимента. – 2006. – №. 5. – С. 111-118. DOI 10.21293/1818-0442-2023-26-1-41-47
- Миненко Д.Е., Шеерман Ф.И., Федоров Е.А. Методы измерений диэлектрических свойств листовых диэлектриков в СВЧ диапазоне на основе полосковых резонаторов // Радиофизика, фотоника и исследование свойств вещества. – 2022. – С. 66-68.

- Миненко, Д.Е. Шеерман Ф.И. Проектирование полосковых резонаторов для измерения εг и tgδ листовых диэлектрических материалов в CBЧ-диапазоне // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2023. – Т. 26, № 1. – С. 41-47. – DOI 10.21293/1818-0442-2023-26-1-41-47
- Арутюнян А.А. и др. Частотные характеристики полосковых модулей формирования квазихаютических сигналов на основе объемных нелинейнооптических кристаллов // Ural Radio Engineering Journal. – 2023. – Т. 7. – №. 3. – С. 227-249. DOI: 10.15826/urej.2023.7.3.001
- 5. Малютин Г.А., Арутюнян А.А. Особенности измерения фазовой задержки в полосковых структурах с диэлектрическим заполнением нелинейными объемными кристаллами // XIII Всероссийская научно-техническая конференция «Метрология в радиоэлектронике». – 2023.
- Воробьев П.А., Малютин Н.Д., Федоров В.Н. Квази-Т-волны в устройствах на связанных полосковых линиях с неуравновешенной электромагнитной связью // Радиотехника и электроника. – 1982. – Т. 27. – №. 9. – С. 1711-1718.
- 7. Рез И.С, Поплавко Ю.М. Диэлектрики: основные свойства и применения в электронике. Радио и Связь, 1989. ISBN 5-256-00235-Х.
- 8. Wong K.K. (ed.). Properties of lithium niobate. IET, 2002. №. 28.
- Журавлев А.А. Разработка и исследование диэлектрических интегральнооптических датчиков напряженности электрического поля: дис. канд. техн. наук. – Пермь. – 2020. – С. 142.
- Лебедев В.В. Исследование высокочастотной и сверхвысокочастотной модуляции оптического излучения в волноводных структурах на основе ниобата лития: дис. – диссертация на соискание учёной степени к. ф.-м. н., СПб: Физико-технический институт им. АФ Иоффе РАН. – 2016. – С. 126.
- Геворкян В., Кочемасов В. Объемные диэлектрические резонаторы-основные типы, характеристики, производители. Часть 1 // Электроника: наука, технология, бизнес. – 2016. – №. 4. – С. 62-77.

12. Диэлектрические резонаторы для ЭПР спектроскопии / И.С. Головина, И.Н. Гейфман, В.Е. Родионов – Национальная академия наук Украины, Институт физики полупроводников им. В.Е. Лашкарева НАН Украины. – Киев: НАН Украины. – 2015. – С. 158. ISBN 978-966-02-7675-8.

# Для цитирования:

Арутюнян А.А., Малютин Н.Д. Полосковый резонатор СВЧ с объемным кристаллом: экспериментальные характеристики и определение эффективной диэлектрической проницаемости. // Журнал радиоэлектроники. – 2024. – №. 7. https://doi.org/10.30898/1684-1719.2024.7.8