МЕЗОСКОПИЧЕСКИЕ ФЛУКТУАЦИИ ПРОВОДИМОСТИ КРЕМНИЕВЫХ ПОЛЕВЫХ ТРАНЗИСТОРОВ С ВЫСОКОЙ КОНЦЕНТРАЦИЕЙ ВСТРОЕННЫХ ЗАРЯДОВ

А. С. Бугаев, А. С. Веденеев, А. М. Козлов, П. А. Рузанов Институт радиотехники и электроники РАН

Получена 3 июня 2008 г.

Проводимость G инверсионного п-канала транзисторных Si-MHOП (метал-нитридокисел-полупроводник) структур с высокой концентрацией встроенных зарядов ($\geq 10^{13}$ см²) вблизи интерфейса Si-SiO₂ обнаруживает в режиме эффекта поля мезоскопические флуктуации зависимости G от потенциала затвора V_g при температуре 4.2. К. Флуктуации G связываются с перестройкой конечной перколяционной сетки, образуемой точечными квантовыми контактами, возникающими в перевальных областях флуктуационного потенциала ($\Phi\Pi$), и нелинейным вкладом точечных квантовых контактов в зависимость G от V_g. Показано, что уменьшение V_g в диапазоне G $\leq 2e^2/h$ приводит к увеличению числа точечных квантовых контактов на одиночном пути протекания от 1 до $\leq L/R_s$, где L – длина затвора, R_s – радиус экранирования $\Phi\Pi$. Мезоскопические особенности зависимости G от V_g и подходы к их анализу подтверждаются результатами численного моделирования.

Практические структуры современной микро- и наноэлектроники, реализуемые на базе МДП (металл-диэлектрик-полупроводник) систем, в настоящее время являются типовыми представителями класса разупорядоченных электронных систем вследствие встроенных (примесных) повышенного содержания зарядов, индуцирующих флуктуационный потенциал **(**ΦΠ**)** границы раздела полупроводник-диэлектрик. увеличения интеграции СБИС, Современная практика а также повышения быстродействия исполнительных элементов, полевых транзисторов, достигается за чет увеличения концентрации примесей в подзатворной области транзисторов и/или снижения рабочих напряжений. Например, в типовых транзисторах типа НЕМТ [1] концентрация встроенных зарядов $N_t \ge 10^{12}$ см⁻², а характерная амплитуда $\Phi\Pi$ $\Delta = (e/\kappa) \sqrt{\pi N}$, $\Delta \ge 20$ мэВ [2] превышает kT при азотных и почти комнатных температурах (е – элементарный заряд, к – средняя диэлектрическая проницаемость границы раздела полупроводник-диэлектрик, *k* – постоянная Больцмана).

В наших недавних работах [3,4] показано, что полевые транзисторы с повышенным содержанием встроенных зарядов проявляют мезоскопические свойства проводимости G при пониженных рабочих напряжениях. Например, в транзисторах с длиной затвора 5 - 10 мкм и инверсионным *n*- и *p*- каналом зависимость G от потенциала затвора V_g обнаруживает в режиме эффекта поля область квази-плато при $G \approx 2e^2/h$ в области температур от 77 и вплоть до комнатных. Также показано, что в этих структурах радиус корреляции перколяционного кластера превышает длину затвора в экспериментальных условиях, что и обосновывает наблюдение мезоскопических явлений в проводимости структур микронных размеров. Квантовые особенности G связываются с тем, что при повышенной концентрации встроенных зарядов, источников ФП, проводимость приобретает перколяционный характер [6]. В ситуации, когда радиус корреляции

перколяционного кластера превышает длину затвора, электронный перенос наиболее преимущественно осуществляется по одиночному, низкоомному пути протекания и лимитирован одиночной наиболее резистивной областью этого пути критическим элементом конечной перколяционной сетки [6], т.е. – одиночной седловой областью ФП [2]. Отметим, что при $N_t \ge 10^{12}$ см⁻² перевальные области ФП проявляют свойства точечных квантовых контактов [7,8] по критерию $\pi h^2 N_t / m \ge kT$ [2,8,9] (mэффективная масса электрона). По этой причине проводимость инверсионного канала полевых транзисторов с микронной длиной затвора проявляет квантовые $2e^2/h$ свойства при высоких температурах, вплоть до комнатных (см.[3-5]).

Между тем, учитывая вероятностный характер электронного переноса в рассматриваемой мезоскопической ситуации, остается неясным вопрос о структуре конечного перколяционного кластера, образуемого точечными квантовыми контактами и экспериментальном проявлении свойств этих контактов в структуре кластера. Изучению этого вопроса и посвящена настоящая работа.

В режиме эффекта поля исследованы модельные Si-MHOП (метал-нитрид-окиселполупроводник) транзисторы с инверсионным *n*- каналом. Длина *L* и ширина затвора составляли 5 и 50 мкм соответственно, толщины затворного изолятора: Si₃N₄ – 350 нм, SiO₂ – 25 нм. Интерес к структурам связан с тем, что область границы раздела SiO₂- Si₃N₄ содержит электронные ловушки, заряд которых задается и/или изменяется путем полевой инжекции электронов из кремния при комнатных температурах и контролируется по смещению порога зависимости *G* от V_g [10,11]. При температуре T = 4.2 К и малом (≤ 0.1 мВ) продольном напряжении по модуляционной методике исследовался кондактанс инверсионного канала структур *G* как синхронное отношение силы продольного тока к продольному напряжению.

Рис.1. Зависимость проводимости Si-MHOП транзистора от потенциала затвора для $N_t \approx 1.3 \cdot 10^{13}$ см⁻² (пунктирная линия – $2e^2/h$).

На рис.1 приведена типовая зависимость G от V_g для концентрации встроенных зарядов $N_t \approx 1.3 \cdot 10^{13}$ см⁻². Зависимость иллюстрирует экспоненциальное нарастание G с V_g вблизи порога проводимости [11], область квази-плато в диапазоне $G \approx e^2/h$ [7,8] и последующий переход к квази-2D проводимости при повышенных $V_g > eN_t/C$ [2], здесь C – удельная емкость подзатворного изолятора.

Рис.2. Параметр $\hbar \omega_x$ в зависимости от нормированной проводимости.

Рис.2 иллюстрирует поведение параметра $\hbar \omega_x$, определенного по [3],

$$\hbar\omega_x = 2\pi (C/eD) \left(d\ln(g_*)/dV_g \right)^{-1},\tag{1}$$

характеризующего кривизну одиночной перевальной (седловой) области $\Phi\Pi$ в направлении движения электронов [7] (здесь $D = 2m/\pi\hbar^2$ – плотность состояний в 2-D электронном канале, $g_* = G/(2e/h - G)$. Значение $\hbar\omega_x \sim 10$ мэВ в области плато ($G \approx e^2/h$) хорошо совпадает с результатами расчета по методике [4], а спад $\hbar\omega_x$ с уменьшением V_g в диапазоне $G \leq e^2/h$ связывался в [4] с отличием распределения потенциала в седловой области $\Phi\Pi$ от параболического закона и уменьшением плотности электронных состояний в «хвосте» флуктуационных состояний [2].

Рис.3. Производная dG/dV_g в зависимости от V_g .

Покажем, что спад анализируемого параметра $\hbar \omega_x$ при $G \leq e^2/h$ может иметь иную природу и, в частности, быть связанным с перестройкой одиночного пути протекания под действием эффекта поля. Обращаясь к экспериментальной зависимости производной dG/dV_g от V_g (рис.3) отметим ее регулярные флуктуации в области $G < e^2/h$. Будем считать, что эти флуктуации имеют мезоскописескую природу и обусловлены перестройкой одиночного пути протекания под действием эффекта поля.

Действительно, одиночный путь протекания представляет собой последовательность флуктуационных потенциальных ям, заполненных электронами, связанных перевальными областями ФП [2,6] как точечными квантовыми контактами [8]. Эти квантовые контакты разбросаны по энергии в меру характерной амплитуды ФП $\Delta \approx (e^2/\kappa)(\pi N_t)^{1/2}$ [2], а их число $N \sim L/R_s$, где R_s – радиус экранирования ФП [2]. В нашем случае $\Delta \approx 100$ мэВ, а $N \sim 50$. Следуя [6] очевидно, что «глубокие» контакты, расположенные по энергии существенно ниже уровня протекания, не вносят заметной вклад в G в силу малого локального сопротивление, а действующими оказываются лишь контакты, попадающие в энергетическую полосу $\approx \hbar \omega_x/2\pi$ ниже уровня протекания (см.[6,8]). Соответственно,

$$N \sim (L/R_s)(\hbar\omega_s/2\pi\Delta) \sim (L/\sim 10,$$
⁽²⁾

а суммарное сопротивление структуры R, нормированное на величину $h/2e^2$, суть

$$R = \sum_{i=1}^{N} R_i , \qquad (3)$$

где нормированное сопротивление *i*-ого контакта

$$R_{i} = 1 + \exp\left(-2\pi \frac{\varepsilon_{F} - V_{i} - \hbar\omega_{y}/2}{\hbar\omega_{x}}\right), \qquad (4)$$

 ε_{F} - энергия Ферми, V_{i} – энергетический уровень *i*-ой седловой точки ФП, $\hbar \omega_{y}$ – параметр, характеризующий кривизну перевальной области ФП в направлении, поперечном движению электронов [7].

Учитывая экспоненциальный характер зависимости R от ε_F , а также то обстоятельство, что ε_F в анализируемых условиях практически линейно изменяется с V_g , получаем

$$-dR/dV_{\sigma} \propto R - N \tag{5}$$

то есть dR/dV_g является линейной функцией R, а результат ее экстраполяции к оси аргумента определяет величину N.

Рис.4. Начальный участок зависимости dR/dV_g от *R*.

Начальный участок экспериментальной зависимости dR/dV_g от R приведен на рис. 4. В соответствии с (4) функция имеет выраженные линейные участки, однако результат экстраполяции этих участков к оси аргумента отчетливо демонстрирует изменение числа действующих квантовых контактов N с V_g : если N = 1 при $G \approx e^2/h$ то с уменьшением V_g число N возрастает до ≈ 8 .

Мы связываем обнаруженное изменение числа N с нелинейностью системы точечных квантовых контактов по отношению к эффекту поля. Действительно, обращаясь к рис.1, отметим две области, соответствующие различному характеру электронного переноса. В первой из них, при $G \le e^2/h$, преобладает туннелирование электронов через точечный кантовый контакт, тогда как во второй области основной вклад в проводимость вносят свободные электроны, о чем, например, свидетельствует возникновение эффекта

Холла при $G \ge e^2/h$ [3]. Такое пороговое поведение проводимости естественно связывать с тем, что квантовый контакт [7] проявляет свое сопротивление (4) лишь при энергиях, близких к положению седловой точки V_i , тогда как при $\varepsilon_F \ge V_i + \Delta$ электроны оказываются в области квази-непрерывного спектра [2], а локальное сопротивление контакта R_i практически обращается в нуль. Энергия Ферми, изменяющаяся при эффекте, поочередно пересекает пороги перехода перевальных областей ФП от одного режима проводимости к другому, что и приводит к изменению числа действующих квантовых контактов на пути протекания.

Рис.5. Начальный участок расчетной зависимости $dR/d\varepsilon_F$ от R.

Вывод о нелинейном поведении системы точечных квантовых контактов подтверждают результаты численного моделирования. На рис.5 приведена расчетная зависимость $dR/d\varepsilon_F$ для цепочки из четырех точечных квантовых контактов, сопротивление которых, в отличие от (4) задавалось в виде

$$R_{i} = \left[1 + \exp\left(-2\pi \frac{\varepsilon_{F} - V_{i} - \hbar\omega_{y}/2}{\hbar\omega_{x}}\right)\right] \left[1 + \exp\left(-\frac{\varepsilon_{F} - V_{i} - \hbar\omega_{y}/2 - \delta_{1}}{\delta_{2}}\right)\right]^{-1}, \quad (6)$$

где δ_1 и δ_2 – параметры. Из сравнения данных рис.4 и 5 видно согласие характера поведения расчетной и экспериментальной функций, что и подтверждает вывод о природе обнаруженных мезоскопических флуктуаций проводимости. Из рис.4 и 5 также следует, что определение $\hbar\omega_x$ по (1) без учета отличия числа *N* от единицы приводит к занижению этого параметра в диапазоне $G < e^2/h$.

Таким образом, обнаруженные мезоскопические флуктуации проводимости инверсионного канала полевых транзисторов с высокой концентрацией встроенных зарядов связан с нелинейным поведением системы точечных квантовых контактов при

эффекте поля. С этим механизмом также частично связан наблюдаемый спад параметра $\hbar\omega_x$ с уменьшением потенциала затвора V_g .

Работа выполнена при поддержке РФФИ (06-02-17529-а) и РНП (2.1.4639).

Литература

- 1. М. Шур. Современные приборы на основе арсенида галлия (М., Мир, 1991). [Пер. с англ.: M.Shur. GaAs Devices and Circuits (Plenum Press, N.Y.-London, 1987)].
- 2. В.А.Гергель, Р.А.Сурис. ЖЭТФ, **84**, 719 (1987).
- 3. Б.А.Аронзон, Д.А.Бакаушин, А.С.Веденеев и др. ФТП, 35, 448 (2001).
- 4. А.Б.Давыдов, Б.А.Аронзон, Д.А.Бакаушин, А.С.Веденеев. ФТП, 36, 1241 (2002).
- 5. А.С.Веденеев, М.А.Феклисов. ФТП, **40**, 1069 (2006).
- 6. Б.И.Шкловский, А.Л.Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- 7. M.Buttiker. Phys.Rev.B, **41**, 906 (1990).
- 8. Y.Meir. Phys.Rev.Lett., 83, 3506 (1999).
- 9. Й Имри. *Введение в мезоскопическую физику* (М., Физматлит, 2002). [Пер. с англ.: Y.Imry. *Introduction to Mesoscopic Physics* (Oxford, University Press, 2002)].
- 10. Т.Андо, А.Фаулер, Ф.Стерн. Электронные свойства двумерных систем (М., Мир, 1985). [Пер. с англ.: Т.Ando, A.Fauler, F.Stern. Rev.Mod.Phys., **54**, 437 (1982)].
- 11. С.Зи. Физика полупроводниковых приборов (М., Мир, 1984). [Пер. с англ.: S.M.Sze. *Physics of Semiconductor Devices* (J.Willey & Sons, N.Y., 1981)].