УДК 539.3; 537.63

МАКСВЕЛЛ-ВАГНЕРОВСКАЯ РЕЛАКСАЦИЯ В ПЬЕЗОКОМПОЗИТЕ РVF/ФЕРРИТ С ЭЛЛИПСОИДАЛЬНЫМИ ВКЛЮЧЕНИЯМИ В ПЕРЕМЕННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

А. А. Паньков

Пермский национальный исследовательский политехнический университет

Получена 2 июня 2013 г., после доработки - 30 июня 2013 г.

Аннотация. Проведен численный расчет и анализ влияния максвеллвагнеровской релаксации на действительные и мнимые части эффективных коэффициентов электромагнитной связи полидисперсного пьезокомпозита PVF/феррит с эллипсоидальными ферритовыми включениями, слоями и волокнами величины наполнения, формы включений В переменном электрическом поле. Выявлен эффект значительного увеличения продольного коэффициента электромагнитной связи для композита с ориентированными игольчатыми ферритовыми включениями В сравнении с аналогичным коэффициентом однонаправленного для волокнистого или слоистого композитов.

Ключевые слова: пьезокомпозит, электромагнитоупругость, максвеллвагнеровская релаксация, полидисперсная структура.

Abstract. Numerical calculation and the analysis of influence of makswell-wagner relaxation on the real and imaginary parts of effective electromagnetic factor of polydisperse piezocomposites: PVF/ferrite with ellipsoidal ferrite inclusions, layers and fibers of size of filling, a form of inclusions in variation electric field is carried out. The effect of significant increase in longitudinal effective electromagnetic factor for a composite with unidirectional needle ferrite inclusions in comparison with similar coefficient for unidirectional fibrous or layered composites is revealed.

Keywords: piezocomposite, electro-magnetic elasticity, maxwell-wagner relaxation, polydisperse structure.

1

Введение

Магнитоэлектрические материалы являются ОДНИМИ ИЗ наиболее перспективных функциональных материалов современной электроники [1-7]. В диэлектрические, пьезоэлектрические, них сочетаются упругие, пьезомагнитные и магнитные свойства, которыми можно эффективно управлять с помощью внешних воздействий. Магнитоэлектрические константы гомогенных магнитоэлектриков очень малы, что обуславливает создание гетерогенных композиционных магнитоэлектриков, магнитоэлектрические константы которых могут на несколько порядков превосходить [5]. В соответствующие константы гомогенных материалов феррит-пьезоэлектрических магнитоэлектрических композитах магнитоэлектрический эффект отсутствует как в пьезоэлектрической, так и в ферритовой фазах; его возникновение В композитах связано с пьезоэлектромагнитным взаимодействием пьезоэлектрической и ферритовой подсистем через упругие деформационные поля. Учет проводимостей γ_f фаз $f = \overline{1, F}$ и частоты ω приложенного электрического поля через комплексную форму записи [5,6]

$$\lambda_f = \lambda'_f - i\frac{\gamma_f}{\omega} \tag{1}$$

тензоров диэлектрических проницаемостей λ_f фаз с действительными частями λ'_f приводит к комплексным значениям искомых тензоров эффективных пьезоэлектромагнитных свойств композита, например, тензор эффективных коэффициентов электромагнитной связи

$$\boldsymbol{\kappa}^* = \boldsymbol{\kappa'}^* + i\boldsymbol{\kappa''}^* \tag{2}$$

будет иметь как действительную κ'^* , так и мнимую κ''^* части и, как следствие, к возникновению на макроуровне композита дисперсии и энергетических потерь в переменных электрических полях, известных под названием «максвелл-вагнеровская релаксация»; *F* - число различных фаз в композите. В [6] исследована максвелл-вагнеровская релаксация феррит-пьезоэлектрических слоистых композитов, приведен анализ концентрационных и частотных зависимостей действительных и мнимых частей эффективных электромагнитных констант.

Цель работы - исследование влияния частоты электрического поля, формы и объемной доли ориентированных эллипсоидальных ферритовых включений в полимерном пьезоэлектрике PVF [8] с максвелл-вагнеровской релаксацией (1) на эффективные коэффициенты электромагнитной связи (2) композита на основе полученного ранее [9] нового решения связанной краевой задачи электромагнитоупругости в обобщенном сингулярном приближении статистической механики композитов с использованием новых решений для сингулярных составляющих вторых производных функций Грина для однородной трансверсально-изотропной пьезоэлектромагнитной среды с эллипсоидальным зерном неоднородности.

1. Определяющие соотношения на микро и макро уровнях композита Для каждой фазы $f = \overline{1,2}$ в представительной области двухфазного композита V запишем определяющие соотношения [1-5]

$$\sigma_{ij} = C_{(f)ijmn} \varepsilon_{mn} - e_{(f)nij} \widehat{E}_n - h_{(f)nij} \widehat{H}_n - \beta_{(f)ij} \Theta,$$

$$\widehat{D}_i = e_{(f)imn} \varepsilon_{mn} + \lambda_{(f)in} \widehat{E}_n + \pi_{(f)i} \Theta,$$

$$\widehat{B}_i = h_{(f)imn} \varepsilon_{mn} + \mu_{(f)in} \widehat{H}_n + \vartheta_{(f)i} \Theta,$$
(3)

связывающие напряжения σ , индукции электрического $\hat{\mathbf{D}}$ и магнитного $\hat{\mathbf{B}}$ полей с деформациями ε , напряженностями электрического $\hat{\mathbf{E}}$ и магнитного $\hat{\mathbf{H}}$ полей, однородным внешним нагревом Θ через считающиеся известными для каждой фазы f тензоры упругих свойств \mathbf{C}_f , пьезоэлектрических \mathbf{e}_f и пьезомагнитных \mathbf{h}_f свойств, диэлектрических λ_f и магнитных $\boldsymbol{\mu}_f$ проницаемостей, температурных коэффициентов $\boldsymbol{\beta}_f$, пироэлектрических $\boldsymbol{\pi}_f$ и пиромагнитных ϑ_f постоянных.

Искомые тензоры эффективных пьезоэлектромагнитных свойств: \mathbf{C}^* , \mathbf{e}^* , \mathbf{h}^* , λ^* , μ^* и, дополнительно, новые тензоры χ^* , κ^* электромагнитной связи входят в определяющие соотношения на макроуровне композита

$$\sigma_{ij}^{*} = C_{ijmn}^{*} \varepsilon_{mn}^{*} - e_{nij}^{*} \widehat{E}_{n}^{*} - h_{nij}^{*} \widehat{H}_{n}^{*} - \beta_{ij}^{*} \Theta,$$

$$\widehat{D}_{i}^{*} = e_{imn}^{*} \varepsilon_{mn}^{*} + \lambda_{in}^{*} \widehat{E}_{n}^{*} + \chi_{in}^{*} \widehat{H}_{n}^{*} + \pi_{i}^{*} \Theta,$$

$$\widehat{B}_{i}^{*} = h_{imn}^{*} \varepsilon_{mn}^{*} + \mu_{in}^{*} \widehat{H}_{n}^{*} + \kappa_{in}^{*} \widehat{E}_{n}^{*} + \vartheta_{i}^{*} \Theta,$$
(4)

где макроскопические значения напряжений $\sigma^* = \langle \sigma \rangle$ и деформаций $\epsilon^* = \langle \epsilon \rangle$, индукций $\mathbf{\hat{D}}^* = \langle \mathbf{\hat{D}} \rangle$, $\mathbf{\hat{B}}^* = \langle \mathbf{\hat{B}} \rangle$ и напряженностей $\mathbf{\hat{E}}^* = \langle \mathbf{\hat{E}} \rangle$, $\mathbf{\hat{H}}^* = \langle \mathbf{\hat{H}} \rangle$; $\langle ... \rangle$ - оператор осреднения по области **V**.

Ненулевые компоненты рассматриваемых трансверсально-изотропных тензоров λ , μ , **C**, **e**, **h**, на микро (3) и на макро (4) уровнях композита можно наглядно представить в матричной форме записи [1,2,10]; например, матрицы пьезомодулей

$$\|e_{ij}\| = \begin{vmatrix} 0 & 0 & 0 & e_{113} & 0 \\ 0 & 0 & 0 & e_{113} & 0 & 0 \\ e_{311} & e_{311} & e_{333} & 0 & 0 & 0 \end{vmatrix}, \ \|h_{ij}\| = \begin{vmatrix} 0 & 0 & 0 & h_{123} & h_{113} & 0 \\ 0 & 0 & 0 & h_{113} & -h_{123} & 0 \\ h_{311} & h_{311} & h_{333} & 0 & 0 & 0 \end{vmatrix}$$

и эффективных коэффициентов электромагнитной связи

$$\|\kappa_{ij}^{*}\| = \begin{vmatrix} \kappa_{11}^{*} & \kappa_{12}^{*} & 0 \\ -\kappa_{12}^{*} & \kappa_{11}^{*} & 0 \\ 0 & 0 & \kappa_{33}^{*} \end{vmatrix}, \quad \|\chi_{ij}^{*}\| = \begin{vmatrix} \kappa_{11}^{*} & -\kappa_{12}^{*} & 0 \\ \kappa_{12}^{*} & \kappa_{11}^{*} & 0 \\ 0 & 0 & \kappa_{33}^{*} \end{vmatrix}$$
(5)

2. Эффективные свойства пьезокомпозита с эллипсоидальными включениями

В [9] получено уточненное решение для тензоров эффективных пьезоэлектромагнитных и термоупругих свойств (4)

$$\mathbf{C}^{*} = <\mathbf{C}> + \Delta^{c}, \quad \lambda^{*} = <\lambda> + \Delta^{\lambda}, \quad \mu^{*} = <\mu> + \Delta^{\mu},$$
$$\mathbf{e}^{*} = <\mathbf{e}> + \Delta^{e}, \quad \mathbf{h}^{*} = <\mathbf{h}> + \Delta^{h}, \quad \chi^{*} = \Delta^{\chi}, \quad \kappa^{*} = \Delta^{\kappa}, \tag{6}$$

$$\beta^* = <\beta>+\Delta^{\beta}, \quad \pi^* = <\pi>+\Delta^{\pi}, \quad \vartheta^* = <\vartheta>+\Delta^{\vartheta}$$

через поправки Δ^c ,..., Δ^{ϑ} к соответствующим осредненным по объему значениям <**C**>, ..., < ϑ >. Тензоры поправок Δ^c ,..., Δ^{ϑ} (6) получены на основе новых решений [9] для компонент тензоров сингулярных составляющих **G**^s вторых производных для функций Грина **G**

$$\nabla \nabla \mathbf{G}(\mathbf{r} - \mathbf{r}_1) \approx \mathbf{G}^s \delta(\mathbf{r} - \mathbf{r}_1), \qquad (7)$$

$$\mathbf{G} = \begin{vmatrix} U_{ik} & U_{i}^{(1)} & U_{i}^{(2)} \\ \Phi_{k} & \Phi^{(1)} & \Phi^{(2)} \\ \Psi_{k} & \Psi^{(1)} & \Psi^{(2)} \end{vmatrix}, \quad \mathbf{G}^{s} = \begin{vmatrix} U_{imjn}^{s} & U_{imn}^{s(1)} & U_{imn}^{s(2)} \\ \Phi_{imn}^{s} & \Phi_{mn}^{s(1)} & \Phi_{mn}^{s(2)} \\ \Psi_{imn}^{s} & \Psi_{mn}^{s(1)} & \Psi_{mn}^{s(2)} \end{vmatrix}$$
(8)

для однородной анизотропной пьезоэлектромагнитной среды, где $\mathbf{G} = \mathbf{G}(\boldsymbol{\rho})$, $\boldsymbol{\rho} = \mathbf{r} - \mathbf{r}_1$, $\delta(\boldsymbol{\rho})$ - дельта-функция Дирака, в точке \mathbf{r}_1 действует единичная объемная сила, или электрический или магнитный источник, ∇ - оператор дифференцирования по координатам вектора \mathbf{r} . Компоненты матрицы \mathbf{G}^s (7), (8) вычисляются по формулам

$$U_{imjn}^{s} = [\overline{U}_{ij}]_{mn}, \quad U_{imn}^{s(1)} = [\overline{U}_{i}^{(1)}]_{mn}, \quad U_{imn}^{s(2)} = [\overline{U}_{i}^{(2)}]_{mn};$$

$$\Phi_{mjn}^{s} = [\overline{\Phi}_{j}]_{mn}, \quad \Phi_{mn}^{s(1)} = [\overline{\Phi}^{(1)}]_{mn}, \quad \Phi_{mn}^{s(2)} = [\overline{\Phi}^{(2)}]_{mn};$$

$$\Psi_{mjn}^{s} = [\overline{\Psi}_{j}]_{mn}, \quad \Psi_{mn}^{s(1)} = [\Psi^{(1)}]_{mn}, \quad \Psi_{mn}^{s(2)} = [\Psi^{(2)}]_{mn},$$

где оператор [11]

$$[\ldots]_{mn} = -\frac{1}{4\pi} \int_{0}^{2\pi\pi} \int_{0}^{\pi\pi} \ldots \kappa_m \kappa_n \sin\theta d\theta d\phi$$

действует на компоненты тензоров

$$\overline{U}_{ij} = \left(\Lambda_{ij} + \frac{h_i^{(1)}h_j^{(1)}}{\lambda^{(1)}} + \frac{h_i^{(2)}h_j^{(2)}}{\lambda^{(2)}}\right)^{-1}, \ \overline{U}_i^{(1)} = \overline{U}_{ij} \frac{h_j^{(1)}}{\lambda^{(1)}}, \ \overline{U}_i^{(2)} = \overline{U}_{ij} \frac{h_j^{(2)}}{\lambda^{(2)}},$$

$$\begin{split} \overline{\Phi}_{j} &= \frac{h_{i}^{(1)}}{\lambda^{(1)}} \overline{U}_{ij} \,, \quad \overline{\Psi}_{j} = \frac{h_{i}^{(2)}}{\lambda^{(2)}} \overline{U}_{ij} \,, \quad \overline{\Phi}^{(1)} &= (h_{i}^{(1)} \overline{U}_{i}^{(1)} - 1) \frac{1}{\lambda^{(1)}} \,, \quad \overline{\Psi}^{(1)} = h_{i}^{(2)} \overline{U}_{i}^{(1)} \frac{1}{\lambda^{(2)}} \,, \\ \\ \overline{\Phi}^{(2)} &= h_{i}^{(1)} \overline{U}_{i}^{(2)} \frac{1}{\lambda^{(1)}} \,, \quad \overline{\Psi}^{(2)} = (h_{i}^{(2)} \overline{U}_{i}^{(2)} - 1) \frac{1}{\lambda^{(2)}} \,, \end{split}$$

где

ф и θ - полярные углы в сферической системе координат, поверхность эллипсоидального «зерна неоднородности» [11] задана равенством

$$\sum_{i=1}^{3} (x_i / a_i)^2 = 1$$
(10)

через значения главных полуосей a_i , $x_i = r_{(1)i} - r_i$ – координаты вектора **х**, тензоры **С**[•], **e**[•], **h**[•], λ [•], μ [•] задают свойства «среды сравнения» [11].

Отметим, что обобщенное сингулярное приближение [9,11] соответствует предельно полидисперсным структурам [12,13] типа «статистическая смесь», у которых отсутствует корреляция физико-механических свойств в произвольных различных точках среды; форма включений учитывается через форму зерна неоднородности (10), «матричность» или непрерывность какой-либо фазы – через приравнивание свойств среды сравнения к свойствам этой фазы и в случае, когда свойство матричности отсутствует, тогда свойства среды сравнения приравниваются к искомым эффективным свойствам композита - «схема самосогласования» [11-13]. Рассматриваемые двухфазные матричные по 2-й фазе полидисперсные структуры с эллипсоидальными ориентированными включениями 1-й фазы, окруженные эллипсоидальными оболочками 2-й фазы.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N6, 2013

Размеры частиц варьируются в широких пределах, включая и бесконечно малые, что обуславливает возможность заполнения ими всей области V композита; отношение главных полуосей внутреннего и наружного эллипсоидов для всех частиц одинаково и равно $\sqrt[3]{v_1}$, где v_1 - относительное объемное содержание 1-й фазы в композите. Такая структура сохраняет свойство матричности по 2-й фазе при всех возможных степенях наполнения $v_1 \in (0;1)$ области V 1-й фазой.

3. Численный расчет

Проведем численный расчет и анализ влияния максвелл-вагнеровской релаксации на действительную и мнимую части эффективного продольного коэффициента электромагнитной связи

$$\kappa_{33}^* = \kappa_{33}^{\prime *} + i\kappa_{33}^{\prime *} \tag{11}$$

полидисперсного двухфазного пьезокомпозита PVF/феррит с эллипсоидальными ферритовыми (1-я фаза) включениями, слоями и волокнами величины наполнения v_1 , параметра формы включений $q = a_3/a_{1(2)}$ и круговой частоты ω переменного электрического поля, $a_2 = a_1$ (10). Решение для искомого эффективного коэффициента κ_{33}^* (11) получим из формул обобщенного сингулярного приближения (6) [9], приняв в (9) равенства

$$\mathbf{C}^{\bullet} = \mathbf{C}_2, \quad \mathbf{e}^{\bullet} = \mathbf{e}_2, \quad \mathbf{h}^{\bullet} = \mathbf{h}_2, \quad \lambda^{\bullet} = \lambda_2, \quad \boldsymbol{\mu}^{\bullet} = \boldsymbol{\mu}_2,$$

т.е. свойства среды сравнения приравниваем к свойствам пьезоэлектрика PVF - 2-я фаза или матрица композита.

Независимые постоянные трансверсально-изотропных магнитоупругих свойств феррита [14]: упругие константы

$$C_{(1)1111} = 22 \cdot 10^{10} \text{ \Pi a}, \quad C_{(1)1313} = 5.5 \cdot 10^{10} \text{ \Pi a}$$

изотропных упругих свойств, трансверсально-изотропные пезомагнитные свойства с осью симметрии *r*₃ заданы через пьезомодули

 $h_{(1)311} = h_{(1)322} = -400$ Tл, $h_{(1)333} = 800$ Тл, $h_{(1)113} = h_{(1)223} = 200$ Тл

и магнитные проницаемости

$$\mu_{(1)11} = \mu_{(1)22} = 3.14 \cdot 10^{-5} \text{ Trm/A}, \quad \mu_{(1)33} = 2.51 \cdot 10^{-5} \text{ Trm/A}.$$

б

Рисунок. Зависимости действительной (сплошная линия) и мнимой (штриховая линия) частей коэффициента магнитоэлектрической связи κ_{33}^* композита PVF/феррит от объемной доли v_1 ферритовых слоев (а), сферических (б), игольчатых (в) включений, волокон (г) при круговой частоте электрического поля $\omega = 1$ с⁻¹ (\circ), 500 с⁻¹ (\triangle), 1000 с⁻¹ (\Box)

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N6, 2013

Трансверсально-изотропные электроупругие свойства полимерного пьезоэлектрика PVF с осью симметрии *r*₃ приведены в [8,14]: упругие константы

$$C_{(2)1111} = 0.86 \cdot 10^{10} \text{ \Pi a}, \quad C_{(2)1122} = 0.56 \cdot 10^{10} \text{ \Pi a},$$

 $C_{(2)1133} = 0.54 \cdot 10^{10} \text{ Ta}, \quad C_{(2)3333} = 0.71 \cdot 10^{10} \text{ Ta}, \quad C_{(2)1313} = 0.10 \cdot 10^{10} \text{ Ta};$

действительные части относительных диэлектрических проницаемостей

$$\lambda'_{(2)11}/\lambda_0 = 14.7$$
, $\lambda'_{(2)33}/\lambda_0 = 12.4$;

пьезоэлектрические модули

$$e_{(2)311} = -1.1 \text{ Km/m}^2, \quad e_{(2)333} = 2.9 \text{ Km/m}^2, \quad e_{(2)113} = 2.3 \text{ Km/m}^2,$$

диэлектрическая проницаемость вакуума $\lambda_0 \approx 8.85 \cdot 10^{-12} \ \Phi/M.$

Дополнительно принимаем, что для феррита тензор пьезоэлектрических свойств $\mathbf{e}_1 = \mathbf{0}$, проводимости $\gamma_{(1)11} = \gamma_{(1)33} = 10^{-5}$ (Ом·м)⁻¹ [6] и диэлектрические проницаемости $\lambda'_{(1)11} = \lambda'_{(1)33} = 10\lambda_0$ [4] никелевой феррошпинели; для пьезоэлектрика PVF тензор пьезомагнитных свойств $\mathbf{h}_1 = \mathbf{0}$, проводимости $\gamma_{(2)11} = \gamma_{(2)33} = 10^{-10}$ (Ом·м)⁻¹ полиэтилена [15], магнитные проницаемости $\mu_{(2)11} = \mu_{(2)33} = \mu_0 \approx 1.256 \cdot 10^{-6}$ Тл^{-м}/А вакуума.

На рисунке представлены результаты расчета концентрационных зависимостей действительной $\kappa_{33}'^*$ и мнимой $\kappa_{33}'''^*$ частей коэффициента магнитоэлектрической связи κ_{33}^* (11) композита PVF/феррит от объемной доли v_1 ферритовых слоев ($q \rightarrow 0$) (рис., а), сферических (q = 1) (рис., б), игольчатых (q = 2) (рис., в) включений, волокон ($q \rightarrow \infty$) (рис., г) при различных значениях круговой частоты ω электрического поля.

4. Выводы

Выявлено значительное увеличение продольного коэффициента κ'_{33}^* для композита с игольчатыми включениями ориентированными по оси r_3 (рис., в) в

сравнении со значением $\kappa_{33}^{\prime*}$ для однонаправленного волокнистого композита (рис., г); эффект особенно проявляется при низкочастотном нагружении $\omega \rightarrow 0$ и высокой степени наполнения $v_1 \approx 0.9$ ферритовыми включениями. Для сферических (рис., б) ферритовых включений этот эффект также имеет место, но выражен немного менее ярко. Коэффициент κ_{33}^* для однонаправленного волокнистого композита (рис., г) не зависит от частоты ω и его мнимая часть $\kappa_{33}^{\prime\prime*} = 0$. Подтверждено, что для частных случаев структур: слоистой (рис., а) и однонаправленной волокнистой (рис., г) из обобщенного сингулярного приближения [9] следуют точные решения для эффективного коэффициента электромагнитной связи κ_{33}^* слоистой [10] и полидисперсной волокнистой [12]

$$\kappa_{33}^{*} = \frac{v_1(1-v_1)\bar{h}_{311}\bar{e}_{311}}{k_{(1)12} - v_1\bar{k}_{12} + G_{(2)12}}$$
(12)

структур в случае, когда свойства среды сравнения приравнены к свойствам матрицы (2-й фазы) композита, где разности: $\bar{e}_{311} = e_{(1)311} - e_{(2)311}$, $\bar{h}_{311} = h_{(1)311} - h_{(2)311}$, $\bar{k}_{12} = k_{(1)12} - k_{(2)12}$, объемный модуль плоской деформации $k_{12} = (C_{1111} + C_{1122})/2$ и модуль сдвига $G_{12} = (C_{1111} - C_{1122})/2$ в плоскости изотропии r_1r_2 . Дополнительно отметим, что аналитическое решение для κ_{33}^* (12) при инверсии фаз в точности совпало с решением [2] асимптотического метода осреднения для композита феррит/пьезоэлектрик с идеальной периодической волокнистой структурой.

Литература

- Партон В.З. Электромагнитоупругость пьезоэлектрических и электропроводных тел / В.З. Партон, Б.А. Кудрявцев. М.: Наука, 1988. 472 с.
- 2. Гетман И.П. О магнитоэлектрическом эффекте в пьезокомпозитах // ДАН СССР. 1991. Т. 317, № 2. С. 341-343.
- 3. Коган Л.З., Мольков В.А. Магнитоэлектрические свойства волокнистых

пьезокомпозитов // Изв. РАН. Механика твердого тела. 1996. № 5. С. 62-68.

- Турик А.В., Чернобабов А.И., Родинин М.Ю., Толокольников Е.А. Магнитоэлектричество в двумерных статистических смесях // Физика твердого тела. 2009. Т. 51. № 7. С. 1395-1397.
- Турик А.В., Чернобабов А.И., Родинин М.Ю. Гетерогенные мультиферроики: магнитоэлектричество и пьезоэффект // Физика твердого тела. 2009. Т. 51. № 8. С. 1580-1583.
- Петров В.М., Бичурин М.И., Srinivasan G. Максвелл-вагнеровская релаксация в магнитоэлектрических композиционных материалах // Письма в ЖТФ. 2004. Т. 30. № 8. С. 81-87.
- Филиппов Д.А. Теория магнитоэлектрического эффекта в гибридных феррит-пьезоэлектрических композиционных материалах // Письма в ЖТФ. 2004. Т. 30. № 9. С. 6-11.
- Sessler G.M. Piezoelectricity in polyvinylidenefluoride // J. Acoust. Soc. Amer. 1981. Vol. 70. № 6. P. 1596-1608.
- Паньков А.А. Коэффициенты электромагнитной связи композита с пьезоактивными фазами // Физическая мезомеханика. 2011. Т. 14. № 2. С. 93-99.
- 10. Паньков А.А. Влияние искривления слоев на коэффициенты электромагнитной связи пьезокомпозита // Механика композиционных материалов и конструкций. 2012. Т. 18. № 2. С. 155-168.
- 11. Шермергор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 400 с.
- 12. Паньков А.А. Пьезоактивные однонаправленно волокнистые полидисперсные композиты // Механика композитных материалов. 2012.
 Т. 48. № 6. С. 873-886
- 13. Кристенсен Р. Введение в механику композитов. М.: Мир, 1982. 334 с.
- 14. Хорошун Л.П. Прогнозирование эффективных свойств пьезоактивных композитных материалов / Л.П. Хорошун, Б.П. Маслов, П.В. Лещенко. Киев: Наук. думка, 1989. 208 с.

15. Турик А.В., Радченко Г.С. Гигантский пьезоэлектрический эффект в слоистых композитах сегнетоэлектрик-полимер // Физика твердого тела. 2003. Т. 45. № 9. С. 1676-1679.