Abstract. The fall of longitudinal
elastic wave to flat boundary between two media with subsequent reflection is
investigated. The investigation is executed by transformation of coordinates with
taking in consideration the boundary conditions. It is shown that by inclined
fall of wave near the boundary it is presented not only the longitudinal but
also shifted components of deformation tensor. It is investigated the geometry
of elastic deformation excitation on the surface of nickel film by femtosecond
laser light influence. It is showed the scheme of periodic grating forming
which is created by interference of two light rays. It is investigated the
elastic strains which are formed in this grating by the thermal influence of
light. In this geometry it is found the expression for the density of
magnetoelastic interaction energy. It is carried out the analysis of surface
and leaky waves components. It is found the components of deformation tensor
which are responsible for magnetoelastic interaction. It is shown that in the
“pump-probe” scheme the light polarization plane rotation of probe laser is
defined by shifted components of deformation tensor. From the whole expression
for magnetoelastic energy density it is selected the terms which are
responsible for the light polarization plane rotation of probe laser. It is
found the connection between the probe light output amplitude and internal
magnetic field orientation in film plane. In example of some versions of shift
components deformation tensor it is found the sharp anisotropy character of
this dependence. It is investigated the interval of field orientation from the
direction parallel to interference stripes to the direction for these stripes
perpendicular. It is shown that on the edges of this interval the dependence of
output signal form field direction goes to zero. When the field direction goes
from edges of this interval the output signal increases. Inside of interval may
be a point where the input signal is zero.
Key words: femtosecond laser,
magnetoelastic interaction, “pump-probe” method.
References
1. Beaurepaire
E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic
nickel. Phys. Rev. Lett. 1996. V.76. ¹22. P.4250-4253.
2. Kirilyuk A.,
Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. Rev.
Mod. Phys. 2010. V.82. ¹3. P.2731-2784.
3. Every A.G.
Measurement of the near-surface elastic properties of solids and thin supported
films. Meas. Sci. Technol. (Measurement Science and Technology).
2002. V.13. P.R21-R39.
4. Walowski
J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics.
Journ. Appl. Phys. 2016. V.120. ¹14. P.140901(16).
5. Bigot J.V.,
Vomir M. Ultrafast magnetization dynamics of nanostructures. Ann. Phys.
(Berlin). 2013. V.525. ¹1-2. P.2-30.
6. Ka Shen,
Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films. Phys.
Rev. Lett. 2015. V.115. ¹19. P.197201(5).
7. Linnik
T.I., Scherbakov A.V., Yakovlev D.R., Liu X., Furdina J.K., Bayer M. Thery of
magnetization precession induced by picosecond strain pulse in ferromagnetic
semiconductor (Ga,Mn)As. Phys. Rev. B. 2011. V.84. ¹21. P.214432(11).
8. Jäger
J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V.,
Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse
magnetostriction in galfenol thin films. Appl. Phys. Lett. 2013.
V.103. ¹3. P.032409(5).
9. Jäger
J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth
A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization
precession in a ferromagnetic layer by coherent monochromatic phonons. Phys.
Rev. B. 2015. V.92. ¹2. P.020404(5).
10.
Kabichenkov A.F. Vliyanie svetovogo polya na dispersiyu magnitodipolnih woln
v ferromagnetikah [The influence of light field on dispersion of
magneto-dipole waves in ferro-magnetics]. Technical Physics. The Russian
Journal of Applied Physics. 1994. V.64. ¹8. P.159-161. (In Russian).
11. Chernov
A.I., Kozhaev M.A., Vetoshko P.M., Zvezdin A.K., Belotelov V.I., Dodonov D.V.,
Prokopov A.R., Shumilov A.G., Shaposhnikov A.N., Berzhanskii V.N. Local probing
of magnetic films by optical excitation of magnetostatic waves. Physics of
the Solid State. 2016. V.58. ¹6. P.1128-1134.
12. Dreher L.,
Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B.
Surface acoustic wave driven ferromagnetic resonance in nickel thin films:
theory and experiment. Phys. Rev. B. 2012. V.86. ¹13. P.134415(13).
13. Thevenard
L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L.,
Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance
in (Ga,Mn)(As,P) epilayers. Phys. Rev. B. 2014. V.90. ¹9.
P.094401(8).
14. Koopmans
B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti
M., Aeschlimann M. The paradoxical diversity of ultrafast laser-induced
demagnetization reconciled. Nature Materials. Supplementary Information.
2009. P.1-4.
15. Koopmans
B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti
M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast
laser-induced demagnetization. /Nature Materials. 2010. V.9. ¹3.
P.259-265.
16. Janusonis
J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov
V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic
transients. Phys. Rev. B. 2016. V.94. ¹2. P.024415(7).
17. Janusonis
J., Jansma T., Chang C.L., Liu Q., Gatilova A., Lomonosov A.M., Shalagatskyi
V., Pezeril T., Temnov V.V., Tobey R.I. Transient grating spectroscopy in
magnetic thin films: simultaneous detection of elastic and magnetic dynamics.
Scientific reports. 2016. 6:29143. DOI: 10.1038/serp29143.
www.nature.com/scientificreports. P.1-10.
18. Chang
C.L., Lomonosov A.M., Janusonis J., Vlasov V.S., Temnov V.V., Tobey R.I.
Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic
oscillator. Phys. Rev. B. 2017. V.95. ¹6. P.060409(5).
19. Lomonosov
A.M., Vlasov V.S., Janusonis J., Chang C.L., Tobey R.I., Pezeril T., Temnov
V.V. Magneto-elastic symmetry breaking with surface acoustic wsves. Proceedings
of “The 7th International Conference on Metamaterials, Photonic
Crystals and Plasmonics” (META-16 Malaga-Spain). ISSN 2429-1390. Metaconferences.org.
P.1-2.
20. Maznev
A.A., Every A.G. Time-domain dynamic surface response of an anisotropic elastic
solid to an impulsive line force. Int. J. Engng. Sci. 1997. V.35. ¹4.
P.321-327.
21. Landsberg
G.S. Optika [Optics]. Moscow, Nauka Pibl., 1976, 928 p. (In Russian).
22. Brehovskih
L.M. Volni v sloistyh sredah. [Wave propagation in stratified madia].
Moscow, ASUUUR Publ., 1973, 502 p. (In Russian).
23. Vlasov
V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound
in a ferrite plate under the ferromagnetic-resonance conditions. Journal of
Communications Technologt and Electronics. 2009. V.54. ¹7. P.821-832.
24. Vlasov
V.S., Shavrov V.G., Shcheglov V.I. The Nonlinear Excitation of Hypersound in
Bilayer Ferrite Structure. Zhurnal Radio electroniki – Journal of Radio
Electronics. 2013. ¹2. Available at:
http://jre.cplire.ru/jre/feb13/10/text.pdf
(In Russian).
25. Vlasov
V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of ultrasound in a
two-layer ferrite structure under ferromagnetic resonance conditions. Journal
of Communications Technology and Electronics. 2014. V.59. ¹5. P.441-455.