"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2017

contents             full textpdf   

The orientational characteristics of magnetoelastic waves excitation by femtosecond light pulses
V. S. Vlasov 1 , P. A. Makarov 1 ,  V. G. Shavrov 2, V. I. Shcheglov 2

Syktyvkar State University of Sorokin, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

2 Kotel’nikov Institute of Radio Engineering and Electronics, Mokhovaya 11-7, Moscow 125009, Russia


The paper is received on May 30, 2017


Abstract. The fall of longitudinal elastic wave to flat boundary between two media with subsequent reflection is investigated. The investigation is executed by transformation of coordinates with taking in consideration the boundary conditions. It is shown that by inclined fall of wave near the boundary it is presented not only the longitudinal but also shifted components of deformation tensor. It is investigated the geometry of elastic deformation excitation on the surface of nickel film by femtosecond laser light influence. It is showed the scheme of periodic grating forming which is created by interference of two light rays. It is investigated the elastic strains which are formed in this grating by the thermal influence of light. In this geometry it is found the expression for the density of magnetoelastic interaction energy. It is carried out the analysis of surface and leaky waves components. It is found the components of deformation tensor which are responsible for magnetoelastic interaction. It is shown that in the “pump-probe” scheme the light polarization plane rotation of probe laser is defined by shifted components of deformation tensor. From the whole expression for magnetoelastic energy density it is selected the terms which are responsible for the light polarization plane rotation of probe laser. It is found the connection between the probe light output amplitude and internal magnetic field orientation in film plane. In example of some versions of shift components deformation tensor it is found the sharp anisotropy character of this dependence. It is investigated the interval of field orientation from the direction parallel to interference stripes to the direction for these stripes perpendicular. It is shown that on the edges of this interval the dependence of output signal form field direction goes to zero. When the field direction goes from edges of this interval the output signal increases. Inside of interval may be a point where the input signal is zero.

Key words: femtosecond laser, magnetoelastic interaction, “pump-probe” method.


1. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996. V.76. ¹22. P.4250-4253.

2. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010. V.82. ¹3. P.2731-2784.

3. Every A.G. Measurement of the near-surface elastic properties of solids and thin supported films. Meas. Sci. Technol. (Measurement Science and Technology). 2002. V.13. P.R21-R39.

4. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics.  Journ. Appl. Phys. 2016. V.120. ¹14. P.140901(16).

5. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures.  Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2-30.

6. Ka Shen, Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films.  Phys. Rev. Lett. 2015. V.115. ¹19. P.197201(5).

7. Linnik T.I., Scherbakov A.V., Yakovlev D.R., Liu X., Furdina J.K., Bayer M. Thery of magnetization precession induced by picosecond strain pulse in ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. B. 2011. V.84. ¹21. P.214432(11).

8. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in galfenol thin films. Appl. Phys. Lett. 2013. V.103. ¹3. P.032409(5).

9. Jäger J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons.  Phys. Rev. B. 2015. V.92. ¹2. P.020404(5).

10. Kabichenkov A.F. Vliyanie svetovogo polya na dispersiyu magnitodipolnih woln v ferromagnetikah [The influence of light field on dispersion of magneto-dipole waves in ferro-magnetics].  Technical Physics. The Russian Journal of Applied Physics. 1994. V.64. ¹8. P.159-161. (In Russian).

11. Chernov A.I., Kozhaev M.A., Vetoshko P.M., Zvezdin A.K., Belotelov V.I., Dodonov D.V., Prokopov A.R., Shumilov A.G., Shaposhnikov A.N., Berzhanskii V.N. Local probing of magnetic films by optical excitation of magnetostatic waves.  Physics of the Solid State. 2016. V.58. ¹6. P.1128-1134.

12. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment.  Phys. Rev. B. 2012. V.86. ¹13. P.134415(13).

13. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers.  Phys. Rev. B. 2014. V.90. ¹9. P.094401(8).

14. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. The paradoxical diversity of ultrafast laser-induced demagnetization reconciled.  Nature Materials. Supplementary Information. 2009. P.1-4.

15. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. /Nature Materials. 2010. V.9. ¹3. P.259-265.

16. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients.  Phys. Rev. B. 2016. V.94. ¹2. P.024415(7).

17. Janusonis J., Jansma T., Chang C.L., Liu Q., Gatilova A., Lomonosov A.M., Shalagatskyi V., Pezeril T., Temnov V.V., Tobey R.I. Transient grating spectroscopy in magnetic thin films: simultaneous detection of elastic and magnetic dynamics.  Scientific reports. 2016. 6:29143. DOI: 10.1038/serp29143. www.nature.com/scientificreports. P.1-10.

18. Chang C.L., Lomonosov A.M., Janusonis J., Vlasov V.S., Temnov V.V., Tobey R.I. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic oscillator.  Phys. Rev. B. 2017. V.95. ¹6. P.060409(5).

19. Lomonosov A.M., Vlasov V.S., Janusonis J., Chang C.L., Tobey R.I., Pezeril T., Temnov V.V. Magneto-elastic symmetry breaking with surface acoustic wsves.  Proceedings of  “The 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics” (META-16 Malaga-Spain). ISSN 2429-1390. Metaconferences.org. P.1-2.

20. Maznev A.A., Every A.G. Time-domain dynamic surface response of an anisotropic elastic solid to an impulsive line force.  Int. J. Engng. Sci. 1997. V.35. ¹4. P.321-327.

21. Landsberg G.S. Optika [Optics]. Moscow, Nauka Pibl., 1976, 928 p. (In Russian).

22. Brehovskih L.M. Volni v sloistyh sredah. [Wave propagation in stratified madia]. Moscow, ASUUUR Publ., 1973, 502 p. (In Russian).

23. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. Journal of Communications Technologt and Electronics. 2009. V.54. ¹7. P.821-832.  

24. Vlasov V.S., Shavrov V.G., Shcheglov V.I. The Nonlinear Excitation of Hypersound in Bilayer Ferrite Structure. Zhurnal Radio electroniki – Journal of Radio Electronics. 2013. ¹2. Available at: http://jre.cplire.ru/jre/feb13/10/text.pdf (In Russian).

25. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of ultrasound in a two-layer ferrite structure under ferromagnetic resonance conditions.  Journal of Communications Technology and Electronics. 2014. V.59. ¹5. P.441-455.

For citation:

V.S.Vlasov, P.A.Makarov, V.G.Shavrov, V.I.Shcheglov. The orientational characteristics of magnetoelastic waves excitation by femtosecond light pulses. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 6. Available at http://jre.cplire.ru/jre/jun17/5/text.pdf. (In Russian)