"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2018

contents of issue      DOI  10.30898/1684-1719.2018.6.11     full text in Russian (pdf)  

Multilayer deposition of pure and fluorine-doped silica glass on silicon wafers in a plasma of resonance local microwave loss-pressure discharge

 

L. M. Blinov 1, A. P. Gerasimenko 3, Yu. V. Gulyaev 1, A. P. Dolgov 3, L. Yu. Kochmarev 2, V. A. Cherepenin 1, I. P. Shilov 2

                                               

1 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia 

2 Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia 

3 JSC Academician A. L. Mints Radiotechnical Institute, RTI Group,  8 Marta str., 10-1, Moscow 127083, Russia

 

The paper is received on June 8, 2018

 

Abstract. An effective method of multilayer, gas – phase deposition of pure and fluorine doped silica glass to the silicon wafers for realization of planar waveguides and other waveguide elements optical structures, is presented. This method is based on using of microwave discharge low pressure plasma (Plasma Chemical Vapour Deposition – PCVD). The paper shows that a non-isothermal plasma of resonance local low pressure microwave discharge is an effective instrument for a forming of  thin pure and also fluorine doped silica glass layers. Cracks in layers, doped by fluorine do not observed, even for significant layer thickness (20 – 50 μm).  The controlled, smooth reduction of a doped layers refraction index to 1, 40 – 1, 43, can be very useful for extension of a work area of waveguides developed. Using of PCVD allows to achieve a significantly better stoichiometry of deposited SiO2 glass layers, than using of other known methods, including the standard for silicon integral technology, PECVD method. High deposition rates achieved are reported in this paper (more, than 1 μm / min). This can significantly increase the actual efficiency of the SiO2 deposition technology. Additionally, the level of optical losses in layers described here, much less, then in standard technologies, due to high transparency and uniformity of glass material, deposited in PCVD method. For deposition of planar waveguide structures on silicon wafers of great diameters (more, then 100 mm), it is necessary to develop a new design of microwave resonance plasmatron, allowing accommodation to great wafers and uniform distribution of microwave electrical field along this great diameters.

Key words: planar optical waveguides; Si-integrated planar waveguides, based on pure and doped silica layers; plasma chemical vapour deposition; resonance microwave plasmatron; microwave discharge.

References

1.                 Zhitkovskiy V. D., Kljuchnik N. T., Yakovlev M. J.  Multipolar couplers, based on layer glass structures for fiber optical information systems.   Systemy i sredstva svjazi, televidenija I radioveschanija - Communications, television and radio. 2002, No. 1-2, pp. 68-73. (In Russian)

2.                 Kljuchnik N. T., Gurjanov A. V., Beljanin V. F., Forming of optical waveguide structure, having a region from nanocomposite matherial.   Nanotechnologii I photonnye kristally. Materialy 1 Mejregionalnogo seminara. [Nanotechnologies and Photon crystals. Matherials of 1-st Interregional seminar]. Joshkar-Ola. Mar. STU. 2003. pp. 50 – 59 (In Russian).

3.                 Smit M. K., C. van Dam PHASAR-Based WDM-Devices: Principles, Design and Applications.  IEEE Journal of selected topics in quantum electronics. 1996, Vol. 2, No. 2,  pp. 236-250.

4.                Goncharov A. A., Kuzmin S. V., Svetikov et al.  Integrated-optical demultiplexor based on waveguide structure SiO2-SiON.  Kwantovaja Elektronika -  Quantum Electronics. V. 35, No. 12, pp. 1163 – 1166 (In Russian).

5.                 Xie J., Zhou L., Li R., Seven bit reconfigurable optical true time delay line based on silicon integration.  Opt. Express, 2014, Vol. 22, pp. 22707-22715.

6.                 Xie J., Zhou L., Li R., J. et al. Continiously tunable ultra-thin silicon waveguide optical delay line. Optica. 2017, Vol. 4, No. 5, pp. 507-515.

7.                 Berikashvili V. Sh., Grigorjanz V. V., Shilov I. P., et al.  Microwave plasmachemical deposition of planar waveguide structures, based on silica glass.   Zhurnal Mikrosistemnaja  Technika -  Journal of Microsystem Technics. 2004, No. 8, pp. 28-33 (In Russian).

8.                 Shilov I. P., Kochmarev L. Yu., Kljuchnik N. T. et al.  Planar gradient-type waveguides, based on nanoscale layers of silica glass, formed in microwave low-pressure plasma.  Izvestija vysshich uchebnych zavedenij. Zhurnal Materialy Elektronnoj Techniki - News of higher education institutions. Journal Materials of Electron Technology. 2012, No. 4, pp. 59-64 (In Russian).

9.                 V. Sh. Berikashvili, V. V. Grigor’yants, N. T. Klyuchnik, L. Yu. Kochmarev, I. P. Shilov, and M. Ya. Yakovlev. Multichannel Optical Splitters Based on Planar Multimode Silica-Glass Waveguides. Journal of Communications Technology and Electronics2008, Vol. 53, No. 8, pp. 965-970, DOI: 10.1134/S1064226908080147

10.            Blinov L. M., Gulyaev Yu. V., Cherepenin V. A., Gerasimenko A. P.  Resonance non-isothermal microwave plasmochemical systems for the special silica fibers synthesis technology.  Zhurnal Radioelectroniki – Journal of Radio Electronics, 2014,  No. 12. Available at: http://jre. cplire.ru/jre/dec14/4/ text.pdf   (In Russian).

11.            Blinov L. M., Gulyaev Yu. V., Cherepenin V. A., Gerasimenko A. P.  Resonance non-isothermal microwave  plasmochemical systems  and methods of the special silica fibers synthesis. Elektromagnitnye volny I elektronnye systemy - Electromagnetic waves and electronic systems. 2016, No. 2, pp. 33-55 (In Russian).

12.             Aleksandrov D. I.  A model of gas-phase processes in microwave low-pressure discharge O2 / SiCl4 / SF6 during the deposition of SiO2.  The dissertation on competition of a scientific degree of candidate of physico-mathematical sciences. Moscow. 1987 (In Russian).

13.            Aleksandrov D. I., Blinov L. M., Dianov E. M., et al. Influence of different types of impacts on electrons energy distribution in low-pressure Ar, O2  plasma. Fizika plazmy – Plasma Physics 1986. Vol. 12, No. 8, pp. 1008 – 1012 (In Russian).

14.            Babenko V. A., Blinov L. M., Volodko V. V., et al.,  Plasma–chemical process modeling in fiber waveguide technology.  Soviet Lightwave Communications. 1992, No. 2, pp. 199 – 2012.

15.            Lebedev I. V. Technika I pribory UHF  [Techniques and instrumentation of  Ultra High Frequencies] Vol. I – II. Moscow, Vysshaja Shkola Publ. 1970. (In Russian).

16.            Dianov E. M., Kornienko L. S., Nikitin E. P., et al.   Radiation-optical properties of optical silica fibers.  Kwantovaja elektronika – Quantum electronics.1983. Vol. 10, No. 3. pp. 473 - 496 (In Russian).

17.            Belov A. V., Blinov L. M., Volodko V. V., et al.,  Optical silica glass fiber, having a cladding, doped with fluorine, and a pure silica glass core.  Kwantovaja elektronika – Quantum electronics. 1985. Vol. 12, No. 3, pp. 634 - 636 (In Russian).

18.            Blinov L. M., Volodko V. V., Solomatin A. M., et al. Influence of fibers chemical composition on their radiation resistance. Elektronnaja Technika – Electronic Technics 1990. Vol. 6, No. 2.  (In Russian).

19.            Dolgov I. I., Ivanov G. N., Chamorovskij Yu. K. et al. Radiation-resistant single-mode optical fiber with silica core. Foton-Ekspress – Photon-Express. 2005, No. 6 (46), pp. 4 – 10 (In Russian).

20.            Tomashuk A. L., Golant K. M., Zabejailov M. O. Fabrication of optical fibers for using in high radiation level.  Volokonno-opticheskie technologii, materialy I ustrojstva - Optical fibers technologies, matherials and devices. 2001, No. 4, pp.52-65 (In Russian).

21.            Zarchi M., Sangari M. Z., Ahangarani S. Characterisation of the SiO2 film deposited by using plasma enhanced chemical vapour deposition (PECVD) with TEOS / N2 / O2Metall. Mater. Eng.  2013, Vol. 9, pp. 287 – 293.

22.            Blinov L. M., Gerasimenko A. P., Gulyaev Yu. V. et al. High-aperture optical waveguide structures, based on silica glass, doped by fluorine, prepared in non- isothermal plasma of a resonance local microwave low-pressure discharge. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2016. No. 1. Available at:  http://jre.cplire.ru/jre/jan16/18/text.pdf  (In Russian).

23.            Blinov L. M., Volodko V. V., Kaganov L. i.   Forming of silica glass layers, doped with fluorine, using low-pressure microwave discharge. Pisjma v JETP – JETP letters. 1991, Vol. 17, pp.87-91 (In Russian).

24.           a) Vursel F. B., Polak L. S., Shipachev V. S.  Thermal decomposition of tetrachlorosilane during the adiabatic compression and in a plasma stream.  Himija vysokih energij - Chemistry of high energies. 1967. Vol. 1, No. 3, pp. 268-274 (In Russian). á) Vursel F. B., Polak L. S.  Reaction under Plasma Condition, M. Venagopalan ed., Wiley Interscience, New York, 1971, Chapter 16.

25.            Rowe  M. D.  Emission spectroscopy of the plasma decomposition of silicon tetrachloride. Journal of Chemistry Society Faraday Trans. 1988, Vol. 84, No. 2, pp. 191-197.

26.            Kravchenko Ju. S. Kinetics of formation and loss of chlorine atoms, molecules and radicals in glow discharge in carbon tetrachloride. Himija vysokih energij - Chemistry of high energies. 1989.  Vol. 23, pp. 444-449 (In Russian).

27.            Bauch et al, Chemical Vapour Deposition in Microwave Produced Plasma for fiber Preform.   Journ. Optical Communications, 1987, Vol. 8, No. 4, pp.130 – 135.

28.            Weiling F.  A model for the plasma-activated chemical vapour deposition process. Journal of Applied Physics. 1985, Vol. 17, No. 9, pp. 4441-4446.

29.            Slovezkij D. J.  Mechanizmy chimicheskih reakzij v neravnovesnoj plazme.   [Mechanisms of chemical reactions in nonequilibrium plasma]. Moscow. Nauka Publ. 1980, 313 p. (In Russian)

30.            Blinov L.M., Zamorenov A. T., Kirsanov A. V. et al.   Installation for treatment by using a microwave plasma.  Copyright certificate USSR, No 876039, 29. 02. 1980 (In Russian).

31.            Babenko V. A., Kochmarev L. Ju., Shilov I. P.  Device forming  the optical waveguides.  Patent to useful model (RF), No 7428, 10. 07. 2008 (In Russian).

32.            Dikarev Ju. I., Synorov V. F., Tolstykh B. L.  Plasmochemical etching in the integrated circuits technology   Zarubezhnaja electronnaja technika – Foreign electronic technics. 1978. No. 2, pp. 22-27 (In Russian).

 

For citation:

L. M. Blinov, A. P. Gerasimenko, Yu. V. Gulyaev, A. P. Dolgov, L. Yu. Kochmarev, V. A. Cherepenin, I. P. Shilov. Multilayer deposition of pure and fluorine-doped silica glass on silicon wafers in a plasma of resonance local microwave loss-pressure discharge. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 6. Available at http://jre.cplire.ru/jre/jun18/11/text.pdf

DOI  10.30898/1684-1719.2018.6.11