"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2018

contents of issue      DOI  10.30898/1684-1719.2018.6.2     full text in Russian (pdf)  

Features of the microwave radiation scattering in dry fluffy snow

 

V. A. Golunov, S. V. Marechek, G. I. Kchokchlov

Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia

 

 The paper is received on May 30, 2018

 

Abstract. Dependences of reflectivity and transmissivity of the fluffy and fine-grained snow layer on the layer thickness were measured at frequencies of 22.2; 37.5: 60 and 94 GHz. The measurements were performed under indoor conditions using artificial "cold" illumination of the investigated snow specimens. The snow specimens were loaded into cylindrical metal containers with a diameter of 0.2 m and a length of up to 1 m. Two structures of fluffy snow with average values of a bulk density of 0.2 ... 0.3, one fine-grained structure and one structure of medium-grained snow were investigated. The experimental dependences of the reflectivity and transmissivity on the layer thickness were approximated by the Kubelka-Munch equations. The frequency dependence of the Kubelka-Munch scattering coefficient is analyzed. It has been established that clusters of ice particles that make up snowflakes can strongly influence on the intensity of scattering. The effect of clusters is appeared as the anomalous frequency dependences of the reflectivity of a semi-infinite snow layer and the Kubelka-Munch scattering coefficient. The anomalous effect is that, firstly, the reflectivity of the semi-infinite layer of fluffy snow at a frequency of 22.5 GHz is higher than at 37.5 and 60 GHz, and secondly, the exponent of the frequency dependence of the Kubelka-Munch scattering coefficient is higher the higher the frequency of radiation. In the case of Rayleigh scattering, the exponent of the frequency dependence is known to be 4, whereas in the case of the fluffy snow it does not exceed a value of 3 even in the 60 to 94 GHz range.

Key words: dry snow cover, thermal emission, microwaves, backscattering, frequency dependence, clusters.

References

1.                 Foster, J. L., D. K. Hall, A. T. C. Chang, and A. Rango. An overview of passive microwave snow research and results. Rev. Geophys. 1984. Vol. 22. Issue 2. P. 195-208. DOI: 10.1029/RG022i002p00195

2.                 Hallikainen, M. Retrieval of snow water equivalent from Nimbus-7 SMMR data: Effect of land-cover categories and weather conditions. IEEE J. of Oceanic Engineering. 1984. Vol. OE-9. No. 5. P. 372-376.

3.                 Chang, A. T. C., J. L. Foster, and D. K. Hall. Nimbus-07 SMMR derived global snow cover parameters.  Ann. Glaciol. 1987. Vol. 9.  P. 39-44.

4.                 Kelly, R. E. J. and Chang, A. T. C. Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Sci. 2003. Vol. 38. No. 4. P. 8076. DOI http://dx.doi.org/10.1029/2002RS002648

5.                 Tedesco, M., Pulliainen, J. T., Pampaloni, P. and Hallikainen, M. T.  Artificial neural network based techniques for the retrieval of SWE and snow depth from SSM/I data.  Remote Sens. of Environment. 2004. Vol. 90. P. 76-85.

6.                 Roy, V., Goïta K., Royer A., Walker A. E., Goodison B. E., Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the TKK snow emission model. IEEE Trans. Geosci. Remote Sens. 2004. Vol. 42. No. 9. P. 1850–1859.

7.                 Kontu, A., Pulliainen J. Simulation of space borne microwave radiometer measurements of snow cover using in situ data and brightness temperature modeling. IEEE Trans. Geosci. Remote Sens. 2010. Vol. 48. No.3. P. 1031–1044.

8.                 Clifford D. Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Intern. J. Remote Sens. 2010. Vol. 31. No. 14. P. 3707—3726.

9.                 Tedesco M, Reichle R, Low A, Markus T, Foster JL. Dynamic approaches for snow depth retrieval from space-borne microwave brightness temperature. IEEE Trans. on Geosci. and Remote Sens. 2010. Vol. 48. No. 4. P. 1955–1967.

10.            Tedesco M., Jeyaratnam J. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures. Remote Sens. 2016, 8, 1037. DOI: 10.3390/rs8121037

11.            Hallikainen M. T., Ulaby F. T. and Deventer T. E. V. Extinction behavior of dry snow in the 18-to-90 GHz range. IEEE Trans. Geosci. Remote Sens. 1987. Vol. GE-25. No. 6. P. 737-745.

12.            Wiesmann A., Mätzler C. Weise T. Radiometric and structural measurements of snow samples.  Radio Sci. 1998. Vol. 33. P. 273-279.

13.            Mätzler C. and A. Wiesmann. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow.  Remote Sens. of Environment. 1999. Vol. 70. No. 3. P. 317-325.

14.            C. Matzler, “Relation between grain-size and correlation length of snow. J. Glaciol. 2002. Vol. 48. No. 162. P. 461–466.

15.            Pulliainen J.T., Grandell J., Hallikainen M.T. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens. 1999. Vol. GE-37. No. 3. P. 1378-1390.

16.            Golunov V. A., Kuz’min A. V., Skulachev D. P., and Khokhlov G. I. Experimental results on the frequency dependence of attenuation, scattering, and absorption of millimeter waves in a dry snow cover. J. of Communications Technology and Electronics. 2017. Vol. 62. No. 9. P. 951–959.

DOI: 10.1134/S106422691709008X

17.            Rytov S.M., Kravtsov Yu.A., Tatarskii V.I. Principles of statistical radiophysics. Publication Info. Berlin. New York: Springer-Verlag. 1989. Vol.3.

18.            Kubelka P., Munk F. Ein beitrag zur optic der farbansstriche.  Z. Tech. Phys. 1931. Vol. 11a. P. 593-601.

19.            Ishimaru A., Wave propagation and scattering in random media, New York: Academic Press, 1978, Vol. 1, 280 p

20.            Golunov V. A., Kuz’min A. V., Skulachev D. P. Khokhlov G. I.  Experimentally obtained spectra of the millimeter waves attenuation, absorption and scattering from dry fresh snow. Zhurnal Radioelectroniki - Journal of Radio Electronics. 2016. No. 9. Available at: http://jre.cplire.ru/jre/sep16/4/text.pdf. (In Russian).

21.            Golunov V.A., Khokhlov G.I. The exponent of the frequency dependence of microwave backscattering from dry snow and artificial snow-like media. Zhurnal Radioelectroniki - Journal of Radio Electronics. 2017. No. 9. Available at: http://jre.cplire.ru/jre/sep17/6/text.pdf (In Russian).

22.            Golunov V. A., Barabanenkov Yu.N. Radiometric methods of measurement of the total reflectivity, the total transmissivity and the coherent transmissivity of a weakly absorbing random discrete medium layer in the millimeter wavelengths range.  Proc. Progress in Electromagnetics Research Symp. Moscow, Russia, August 19-23. 2012. Đ. 1415-1418.

23.            Chen, C.-T., L. Tsang, J. Guo, A. T. C. Chang, and K.-H. Ding (2003), Frequency dependence of scattering and extinction of dense media based on three-dimensional simulations of Maxwell’s equations with applications to snow. IEEE Trans.Geosci. Remote Sens., Vol. 41, P. 1844–1852.

24.            Tedesco M., Kim E. J. Intercomparison of electromagnetic models for passive microwave remote sensing of snow.  IEEE Trans. Geosci. Remote Sens. 2006. Vol. GE-44. No. 10. P. 2654-2664.

25.            Kontu A., Pulliainen J. Simulation of spaceborne microwave radiometer measurements of snow cover using in situ data and brightness temperature modeling. IEEE Trans. Geosci. Remote Sens. 2010. Vol. GE-48. No. 3. P. 1031–1044.

26.            Rutter, N., M. Sandells, C. Derksen, P., et. al. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling. J. Geophys. Res. Earth Surf. 2014. Vol. 119. No. 3. P. 1-16. DOI: 10.1002/2013JF003017.

27.            Golunov V.A. Thermal emission from dry homogeneous snowpack in the millimeter wave range. Zarubezhnaya radioelektronika. Uspekhi sovremennoy radioelektroniki. 2002. No. 6. P. 35-44. (In Russian)

 

For citation:

V. A. Golunov, S. V. Marechek, G. I. Kchokchlov. Features of the microwave radiation scattering in dry fluffy snow. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 6. Available at http://jre.cplire.ru/jre/jun18/2/text.pdf

DOI  10.30898/1684-1719.2018.6.2