Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6

Full text in Russian (pdf)

Russian page


DOI https://doi.org/10.30898/1684-1719.2020.6.11

UDC 621.391.81:621.396.96




R. N. Ipanov

National Research University MPEI, Krasnokazarmennaya 14, Moscow 111250, Russia


The paper was received on March 23, 2020, after correction – on June 11, 2020


Abstract. Well-known space synthesized aperture radars (SAR) for remote sensing of the Earth use signals with linear frequency modulation till now. At the same time, an increasing interest of radar experts to signals with phase-coded shift-keying (PCSK) should be noted. This makes it possible to improve the quality of radar images. It is known also that the use of polyphase probing PCSK-signals makes it possible to increase the radar radiation security substantially. In this paper a polyphase (p-phase where p is a prime integer number) probing signal with zero autocorrelation zone (ZACZ) has been synthesized for SARs. The signal is a sequence of p PCSK-pulses encoded with complementary sequences of the p-ary D-code with additional frequency shift-keying of the sub-pulses of pulses. A comparative analysis of the correlation characteristics of the synthesized three-phase signal with a signal without modulation of discretes and with a PCSK-signal encoded with a ternary M-sequence (MS) is carried out. Overall correlation characteristics of the signal ensemble used in the mode of the radar aperture synthesis have been also analyzed. The analysis revealed that in the case of a mismatch by Doppler frequency, the root-mean-square level of the side lobes (SL) of autocorrelation function (ACF) of the synthesized signal were more than by 8.5 dB less than the root-mean-square level of the SLs of the ACF of the PCSK-signal encoded with a MS. The total ACF of the ensemble consisting on nine signals has zero SLs along the entire time axis τ, and in the case of a mismatch by frequency in the ZACZ, the root-mean-squire level of SLs is more than by 25 dB less than the root-mean-square level of the SLs of the total ACF of cyclical ensemble consisting on nine PCSK signals encoded with a MS.

Keywords: ambiguity function, autocorrelation function, complementary sequences, pulse train, probing signal, zero autocorrelation zone.


1. Wehner D.R. High Resolution Radar. 2nd ed. Norwood, Artech Ноusе. 1995. 593 p.

2. N. Ganveer, G. Vishal, R.S. Rao and V. Biradar. SAR implementation using LFM signal. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). 20-21 May 2016. P. 1094–1097. DOI: 10.1109/RTEICT.2016.7808000.

3. Liu F., Mu S., Lyu W., Li W.,  Ge T. MIMO SAR Waveform Separation Based on Costas-LFM Signal and Co-arrays for Maritime Surveillance. Chinese Journal of Electronics. 2017. Vol. 26. No. 1. P. 211–217. DOI: 10.1049/cje.2016.11.015.

4. Wu Q., Liu X., Liu J., Zhao F. and Xiao S. A Radar Imaging Method Using Nonperiodic Interrupted Sampling Linear Frequency Modulation Signal. IEEE Sensors Journal, 2018, Vol. 18, No. 20, pp. 8294–8302. DOI: 10.1109/JSEN.2018.2865531.

5. Gruzdov V.V., Kolkovskij Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii distancionnogo zondirovaniya Zemli iz kosmosa. [New technologies of remote sensing of the Earth from space]. Moscow, Tekhnosfera Publ. 2018. 482 p. (In Russian)

6. Li S.F., Chen J., Zhang L.Q., Zhou Y.Q. Image formation algorithm for missile borne MMW SAR with phase coded waveform. 2009 IET International Radar Conference.  20-22 April 2009. P. 1–4. DOI: 10.1049/cp.2009.0112.

7. Garren D.A., Pace P.E., Romero R.A. Use of P3-coded transmission waveforms to generate synthetic aperture radar images. 2014 IEEE Radar Conference. 19-23 May 2014. P. 0765-0768. DOI: 10.1109/RADAR.2014.6875692.

8. Levanon N., Mozeson E. Radar Signals. Hoboken, Wiley. 2004. 411 p.

9. Ipanov R.N., Baskakov A.I., Olyunin N., Ka Min-Ho. Radar Signals with ZACZ Based on Pairs of D-Code Sequences and Their Compression Algorithm. IEEE Signal Processing Letters. 2018. Vol. 25. No. 10. P. 1560–1564. DOI: 10.1109/LSP.2018.2867734.

10. Ipanov R.N. Pulsed Phase-Shift Keyed Signals with Zero Autocorrelation Zone. Journal of Communications Technology and Electronics. 2018. Vol. 63. No. 8. P. 895–901. DOI: 10.1134/S1064226918080077.

11. Ipanov R.N. Sensing signals with zero autocorrelation zone for the synthesized aperture radar. Zhurnal Radio elektroniki - Journal of Radio Electronics. 2019. No. 8. Available at http://jre.cplire.ru/jre/aug19/7/text.pdf. DOI: 10.30898/1684-1719.2019.8.7. (In Russian)

12. Ipanov R.N. Phase-Code Shift Keyed Probing Signals with Discrete Linear Frequency Modulation and Zero Autocorrelation Zone. Infocommunications Journal. 2020. Vol. 12. No. 1. P. 45–52. DOI: 10.36244/ICJ.2020.1.7.

13. Ipanov R.N. Polyphase Radar Signals with ZACZ Based on p-Pairs D-Code Sequences and Their Compression Algorithm. Infocommunications Journal. 2019. Vol. 11. No. 3. P. 21–27. DOI: 10.36244/ICJ.2019.3.4.

14. Carlson E.J. Low probability of intercept (LPI) techniques and implementations for radar systems. 1988 IEEE National Radar Conference. 20-21 April 1988. P. 56-60. DOI: 10.1109/NRC.1988.10930.

15. Chebanov D., Lu G. Removing autocorrelation sidelobes of phase-coded waveforms. 2010 IEEE Radar Conference. 10-14 May 2010. P. 1428–1433.

DOI: 10.1109/RADAR.2010.5494391.

16. Ipatov V.P. Spread Spectrum and CDMA, Principles and Applications. Hoboken, Wiley. 2005. 400 p.

17. Zakharov A.I. Effects of SAR Sounding Signal Parameters on ERS Measurement Quality. Kosmonavtika i Raketostroenie – Astronautics and Rocket Science. 2012. No. 3. Available at https://elibrary.ru/item.asp?id=18814508. (In Russian)

18. Varakin L.E. Teoriya slozhnyh signalov [The theory of complex signals]. Moscow, Sov. Radio Publ. 1970. 376 p. (In Russian)

19. Alexandrov Yu.N., Basilevski A.T., Kotelnikov V.A., Petrov G.M., Rzhiga O.N., Sidorenko A.I. A planet rediscovered: results of Venus radar imaging from the Venera 15 and Venera 16 spacecraft. Soviet scientific review. Section E. Astrophysics and Space Physics Reviews. 1988. Vol. 6. No. 1. P. 61–101.

20. Campbell B.A. et al. Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties. Icarus. 2010. Vol. 208. P. 565–573. DOI: 10.1016/j.icarus.2010.03.011.


For citation:

Ipanov R.N. Polyphase frequency shift keyed probing signals with zero autocorrelation zone for the synthetic aperture radar. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at http://jre.cplire.ru/jre/jun20/11/text.pdf.  DOI: https://doi.org/10.30898/1684-1719.2020.6.11