Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6

Full text in Russian (pdf)

Russian page


DOI  https://doi.org/10.30898/1684-1719.2020.6.14

UDC 537.874; 537.624




V. S. Vlasov 1, V. G. Shavrov 2, V. I. Shcheglov 2

 Syktyvkar State University, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

The paper was received on June 16, 2020


Abstract. The task about radiation of electromagnetic wave out of magnetic film by the action of short light pulse from femtosecond laser is investigated. As a main mechanism of influence of powerful light pulse to magnetic media we established the sharp rise if its temperature which is accompanied by decreasing of its temperature. We established that sharp changing of magnetic field which is created by magnetization must lead to generation of electromagnetic wave radiation from media. For the explanation of sharp changing of magnetization the model of approaching rapid motion of two magnetic charges having opposite signs is proposed. The electro-dynamical investigation of supplied task is executed. The magnetic field is found which is connected with the rapid motion of magnetic charge. Its opposite proportion to the distance from point of observation is found. It is established that this fact was the evidence of excitation of propagating electromagnetic wave. We found the presentation of magnetic charges through magnetization which may be able to found the magnetic field of wave which is radiated by changing of magnetization. We investigated the dynamic of temperature changing of magnetic media when light pulse from laser is influenced. It is shown that the complete process of temperature change consists of successive heating and cooling processes. In this case the duration of heating is determined by the duration of pulse and the duration of cooling is determined by the mechanism of heat removal to the substrate. It is shown that heating of a magnetic film occurs much faster than its cooling. In this case the acceleration of the movement of magnetic charges during heating significantly exceeds that during cooling. Based on the well-known temperature dependence of magnetization, the behavior of magnetization during heating and cooling under the influence of a light pulse is investigated. It is shown that with the adopted parameters of the task, the change in magnetization can reach one and a half to two times, which is in good agreement with experiment. The spectral characteristics of radiated electromagnetic waves are found. It is shown that the spectrum of radiation bothduring heating and cooling has sharp maximum corresponding to terahertz at the adopted parameters. Some recommendations are given for founding described effect in an experiment and possible practical use.

Key words: radiation of electromagnetic waves, shock changing of magnetization, magnetic charge, femtosecond laser.


1. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010. Vol.82. No.3. P.2731-2784.

2. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. Ann. Phys. (Berlin). 2013. Vol.525. No.1-2. P.2-30.

3. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. Journ. Appl. Phys. 2016. Vol.120. No.14. P.140901(16).

4. Every A.G.  Measurement of the near-surface elastic properties of solids and thin supported films.  Measurement Science and Technology. 2002. Vol.13. P.R21-R39.

5. Ka Shen, Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films. Phys. Rev. Lett. 2015. Vol.115. No.19. P.197201(5).

6. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in galfenol thin films. Appl. Phys. Lett. 2013. Vol.103. No.3. P.032409(5).

7. Jäger J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons. Phys. Rev. B. 2015. Vol.92. No.2. P.020404(5).

8. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. Phys. Rev. B. 2012. Vol.86. No.13. P.134415(13).

9. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers. Phys. Rev. B. 2014. Vol.90. No.9. P.094401(8).

10. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients. Phys. Rev. B. 2016. Vol.94. No.2. P.024415(7).

11. Janusonis J., Jansma T., Chang C.L., Liu Q., Gatilova A., Lomonosov A.M., Shalagatskyi V., Pezeril T., Temnov V.V., Tobey R.I. Transient grating spectroscopy in magnetic thin films: simultaneous detection of elastic and magnetic dynamics. Scientific reports. 2016. 6:29143. P.1-10. URL: www.nature.com/scientificreports

12. Chang C.L., Lomonosov A.M., Janusonis J., Vlasov V.S., Temnov V.V., Tobey R.I. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic oscillator. Phys. Rev. B. 2017. Vol.95. No.6. P.060409(5).

13. Lomonosov A.M., Vlasov V.S., Janusonis J., Chang C.L., Tobey R.I., Pezeril T., Temnov V.V. Magneto-elastic symmetry breaking with surface acoustic waves. Proceedings of  “The 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics” (META-16 Malaga-Spain). P.1-2. ISSN 2429-1390. URL: metaconferences.org. P.1-2.  

14. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The orientational characteristics of magnetoelastic waves excitation by femtosecond light pulses. Zhurnal Radio electroniki – Journal of Radio Electronics. 2017. No.6. Available at: http://jre.cplire.ru/jre/jun17/5/text.pdf. (In Russian)

15. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The vibrations of magnetization excited by shock influence of elastic displacement. Zhurnal Radio electroniki – Journal of Radio Electronics. 2018. No.4. Available at: http://jre.cplire.ru/jre/apr18/3/text.pdf. (In Russian)

16. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996. Vol.76. No.22. P.4250-4253.

17. Bigot J.V., Vomir M.  Ultrafast magnetization dynamics of nanostructures. Ann. Phys. (Berlin). 2013. Vol.525. No.1-2. P.2.

18. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. The paradoxical diversity of ultrafast laser-induced demagnetization reconciled. Nature Materials. Supplementary Information. 2009. P.1-4.

19. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Materials. 2010. Vol.9. No.3. P.259-265. 20.Vashkovsky A.V., Zubkov V.I, Lock E.H., Shcheglov V.I. Propagation of magnetostatic surface waves in transverse nonuniform magnetic fields. Journal of Communications Technology and Electronics. 1993. Vol.38. ¹5. P.818. 

21. Vashkovsky A.V., Lock E.H. The purposefulness diagram of radiation which arise as a result of transformation of magnetostatic surface waves to electromagnetic waves. Journal of Communications Technology and Electronics. 1995. Vol.40. No.7. P.1030. 

22. Vashkovsky A.V., Lock E.H. About the parameters of purposefulness diagram of radiation arising by transformation of magnetostatic surface waves to electromagnetic waves. Journal of Communications Technology and Electronics. 2004. Vol.49.No.8. P.904-909. 

23. Zubkov V.I., Shcheglov V.I. The spatial distribution of electromagnetic waves radiation in ferrite film magnetized by transverse nonuniform magnetic field.  Technical Physics Letters. 2000. Vol.26. P.588-590. https://doi.org/10.1134/1.1262921

24. Zubkov V.I., Shcheglov V.I. The electromagnetic waves radiation which is determined by acceleration of magnetostatic waves in nonuniform magnetized ferrite film. Journal of Communications Technology and Electronics. 2001. Vol.46. No.4. P.433. 

25. Zubkov V.I., Shcheglov V.I. Characteristics of radiation generated during the conversion of backward bulk magnetostatic waves into electromagnetic waves. Technical Physics Letters. 2008. Vol.34. No.11. P.971-973. https://doi.org/10.1134/S1063785008110

26. Zubkov V.I., Shcheglov V.I. The characteristics of electromagnetic radiation arising by arbitrary direction of propagation of magnetostatic surface waves in transverse increasing magnetic field. Journal of Communications Technology and Electronics. 2009. Vol.54. No.9. P.1009-1014.


27. Shavrov V.G., Shcheglov V.I. Magnitostaticheskiye i elektromagnitnyye volny v slozhnykh strukturakh. [Magnetostatic and electromagnetic waves in complex structures]. Moscow, Fizmatlit Publ. 2017. (In Russian)

28. Levich V.G. Kurs teoreticheskoy fiziki. T.1. [Handbook of theoretical physics. Vol.1]. Moscow, Nauka Publ. 1969. (In Russian)

29. Semenov A.A. Teoriya elektromagnitnykh voln [Theory of electromagnetic waves]. Moscow, Moscow State University Pul. 1968.  (In Russian)

30 Damon R.W., Eshbach J.R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961. Vol.19. No.3/4. P.308.

31. Shavrov V.G., Shcheglov V.I. Magnitostaticheskiye volny v neodnorodnykh polyakh [Magnetostatic waves in nonuniform fields]. Moscow, Fizmatlit Publ. 2016. (In Russian)

32. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

33. Sivukhin D.V. Obshchiy kurs fiziki. T.3. Elektrichestvo [General physics course. Vol.3. Electricity]. Moscow, Nauka Publ. 1977. (In Russian)

34. Stepanov V.V. Kurs differentsial'nykh uravneniy [Course of differential equations]. Moscow-Leningrad, OGIZ Publ. 1945. (In Russian)

35. Elsgolts L.E. Differentsial'nyye uravneniya i variatsionnoye ischisleniye. [Differential equations and variation calculation]. Moscow, Nauka Publ. 1965. (In Russian)

36. Vonsovsky S.V., Shur Ya.S. Ferromagnetizm.[Ferromagnetism]. Moscow, OGIZ Gostekhizdat Publ. 1948. (In Russian)

37. Vonsovsky S.V. Magnetizm [Magnetism]. Moscow, Nauka Publ. 1971. (In Russian)

38. Potemkin V.G. Sistema MATLAB. Spravochnoye posobiye [MATLAB system. Reference guide]. Moscow, Dialog Publ. 1998. (In Russian)

39. Smith R., Jons F., Chesmer R. The detection and measurement of infra-red radiation, (Monographs on the physics and chemistry of materials). Clarendon P; 2nd edition 503 p.

40. Shavrov V.G., Shcheglov V.I. Ferromagnitnyy rezonans v usloviyakh oriyentatsionnogo perekhoda [Ferromagnetic resonance under conditions of orientational transition]. Moscow, Fizmatlit Publ. 2018. (In Russian)

41. Shavrov V.G., Shcheglov V.I. Dinamika namagnichennosti v usloviyakh izmeneniya yeye oriyentatsii [Dynamics of magnetization under conditions of a change in its orientation]. Moscow, Fizmatlit Publ. 2019. (In Russian)

42. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear dynamics of the magnetization in a ferrite plate with magnetoelastic properties
under the conditions for orientational transition
. Journal of Communications Technology and Electronics. 2010. Vol.55. No.6. P.645-656. https://doi.org/10.1134/S1064226910060069


For citation:

Vlasov V.S., Shavrov V.G., Shcheglov V.I. Radiation of electromagnetic wave out of magnetic film by the action of  femtosecond light pulse. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. https://doi.org/10.30898/1684-1719.2020.6.14  (In Russian)