Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6

Full text in English (pdf)

Russian page



UDC 621.371; 621.372.832


A tunable multiband microwave filter based on a waveguide tee interferometer containing Fabry–Perot resonator with a metastructure as a reflector


 G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, V. P. Mal’tsev, I. P. Nikitin

Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia


The paper was received on June 15, 2020


Abstract. A new way to achieving selectively electrically tunable multiband microwave filtering is proposed that is based on a modified h-plane 3–6 GHz waveguide tee interferometer containing a tunable metastructure. The metastructure is placed along the wave propagation direction in the short-circuited h-arm at a distance from the short, thus forming the configuration of a Fabry–Perot resonator. Various functionalities of the interferometer are revealed and demonstrated through the use of various varactor-loaded metastructures such as a wire metastructure, a butterfly dipole, a row of split ring resonators, and a rings/dipole sandwich. The possibility of selective tuning of the band center frequency (by 0.2 GHz with a wire metastructure and a butterfly dipole), or a selective change in the shape and width of each stop-band by turns (with split ring resonators), or a change in the shape and width of each stop-band and center frequency independently (with a "split ring resonators - butterfly dipole" sandwich) is demonstrated. The tuning of the interference bands in the resonator and the interferometer is related to the effect of tunable resonance in the metastructure, which occurs when the resonance frequency in the metastructure approaches the appropriate interference band.

Keywords: filtering, selective electrical tuning, tee waveguide interferometer, metastructure, varactor, microwaves, Fabry-Perot resonator, interference bands tuning.


1.        Cameron R.J., Kudsia C.M., Mansour R.R. Microwave Filters for Communication Systems: Fundamentals, Design, and Applications. JohnWiley & Sons. Inc. 2018. 928 p.

2.        Entesari K., Rebeiz G.M. A 12-18-GHz three-pole RF MEMS tunable filter. IEEE Trans. Microw. Theory Techn., 2005. Vol.53. No.8. P.2566-2571.

3.        Huang F., Fouladi S., Mansour R. High-Q tunable dielectric resonator filters using MEMS technology. IEEE Trans. Microw. Theory Techn. 2011. Vol.59. No.12. P.3401-3409. Part 2, SI.

4.        Kozhevnikov A.V., Khivintsev Yu.V., Dudko, G.M. et al. Filtration of Surface Magnetostatic Waves in Yttrium Iron Garnet Films of Variable Width Excited by Focusing Transducers. Technical Physics Letters. 2018. Vol.44. No.8. P.705–708.

5.        Bi K., Zhu W., Lei M et al. Magnetically tunable wideband microwave filter using ferrite-based metamaterials. Appl. Phys. Lett. 2015. Vol.106. No.17. P.173507.

6.        Sharma D., Khare N., Koul S.K. et al. Spur-line based magnetically tunable bandstop filter using partially magnetized ferrite thin films. Appl. Phys. Lett.  2017. Vol.110. No.18. P.182401.

7.        Jiang H., Lacroix B., Choi K. et al. Ka- and U-band tunable bandpass filters using ferroelectric capacitors. IEEE Trans. Microw. Theory Techn. 2011. Vol.59. No.12. P.3068-3075, Part 1.

8.        Mias C. Waveguide and free-space demonstration of tunable frequency selective surface. Electron. Lett. 2003, Vol.39. No.11. P.850 – 852.

9.        Jung M., Min B-W. A Widely Tunable Compact Bandpass Filter Based on a Switched Varactor-Tuned Resonator. IEEE Access,. 2019. No.7. P.95178-95185.

10.   Butylkin V., Kazantsev Y., Kraftmakher G. et al. Voltage-controlled unidirectional propagation of microwaves in metastructures ferrite/conductive elements with varactors. Appl. Phys. A. 2017. Vol.123. No.1. P.57 .

11.   Kraftmakher G., Butylkin V., Kazantsev Y. et al. Microwave tunable and switchable planar non-reciprocal three-layer multiresonant wire–ferrite metastructure. Electron. Lett. 2017. Vol.53. No.18. P.1264–1266.

12.   Krupka J., Cwikla A., Mrozowski M. et al. High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2005. Vol.52. No.9. P.1443–1451.

13.   Liu Z.G., Zhang W.X. Fu D.L. et al. Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microwave and Optical Technology Letters. 2008. Vol.50. No.6. P.1623 – 1627.

14.   Liu B., Wei F., Shi X. Reconfigurable bandpass filter based on net-type stepped-impedance resonator. Electron. Lett. 2010. Vol.46. No.22. P.1506-1507.

15.   Kaur T., Osorio L., Olvera-Cervantes J.L. et al. Microfluidic Reconfigurable Filter Based on Ring Resonators. Progress In Electromagnetics Research Letters. 2018. Vol.79. P.59 – 63.

16.   Gómez-García R., Guyette A.C. Reconfigurable Multi-Band Microwave Filters. IEEE Trans. Microw. Theory Techn. 2015. Vol.63. No.4. P.1294 – 1307.

17.   Kumar M.S., Choukiker Y.K. Tunable wideband frequency and switching polarization reconfiguration antenna for wireless applications. IET Microwaves, Antennas & Propagation. 2018. Vol.12. No.15. P.2364 – 2371.

18.   Chen F.-C., Li R.-S., Chen  J.-P. A Tunable Dual-Band Bandpass-to-Bandstop Filter Using p-i-n Diodes and Varactors. IEEE Access. 2018. No.6. P.46058 – 46065.

19.   Zhang Y-J., Cai J., Chen J-X. Design of Novel Reconfigurable Filter With Simultaneously Tunable and Switchable Passband. IEEE Access. 2019. No.7. P.59708-59715.

20.   Yang T., Rebeiz G.M. Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls. IEEE Trans. Microw. Theory Techn. 2017. Vol.65. No.7. P.2288-2297.

21.   Al-Yasir Y.I.A., Parńhin N.O., Abd-Alhameed R.A. et al. Resent Progress in the Design of 4G/5G Reconfigurable Filters. Electronics. 2019. Vol.8. P.114–131.

22.   Xiao-Ping Chen, Ke Wu. Substrate Integrated Waveguide Filters: Design Techniques and Structure Innovations. IEEE Microwave Magazine, September. 2014. Vol.15. P.121-133.

23.   Varikuntla K.K., Singaravelu R. Design of SIW cavity models to control the bandwidth of frequency selective surface. IET Microwave Antennas & Propagation. 2019. Vol.13. No.14. P.2515-2524.

24.   Fok M.P., Ge J. Tunable Multiband Microwave Photonic Filters. Photonics. 2017. Vol.4. No.4. P.45.

25.   Ustinova I.A., Nikitin A.A., Kondrashov A.V. et al. A microwave interferometer based on a ferrite–ferroelectric layered structure. Tech. Phys. Lett. 2016. Vol.42. No.9. P.891–894.

26.   Kraftmakher G.A., Butylkin V.S., Kazantsev Yu.N. et al. Magnetically and Electrically Controlled Microwave Interference Pattern in a Meta-Interferometer. JETP Letters. 2019. Vol.109. No.4. P.232-238.

27.   Kraftmakher G., Butylkin V. Cut wires grating – single longitudinal wire’ planar metastructure to achieve microwave magnetic resonance in a single wire. Advanced Electromagnetics. 2012. Vol.1.No.2. P.16 -25.

28.   Stone J.M. Radiation and Optics: An Introduction to the Classical Theory. New York, McGraw-Hill. 1963. 544 p.


For citation:

Kraftmakher G.A.,  Butylkin V.S., Kazantsev Yu.N., Maltsev V.P., Nikitin I.P. A tunable multiband microwave filter based on a waveguide tee interferometer containing Fabry–Perot resonator with a metastructure as a reflector.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. https://doi.org/10.30898/1684-1719.2020.6.15