Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.6.3

UDC 621.385.624

 

Electron optical system of W-band high power extended interaction klystron

 

 V. Y. Rodyakin 1, V. M. Pikunov 1, V. N. Aksenov 2

1 Institute on Laser and Information Technologies - Branch of the Federal Scientific Research Centre «Crystallography and Photonics» RAS, 140700 Shatura, Svyatoozerskaya Str, 1

2 Physics Department and International Laser Center of Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, 1

 

The paper was received on May 23, 2020

 

Abstract. We present the results of theoretical analysis of electron optical system of the high power W-band extended interaction klystron. The computer code PARS is used for numerical simulation. As result of optimization, the design of Piers type electron gun, magnetic focusing system and depressed collector have been developed.  Electron gun has high beam current density convergence factor 100 and gives electron beam current 1.8 A. Magnetic focusing system provides 99% beam current transmission through klystron interaction region with taking into account of thermal distributions of transverse energy of emitted electrons. Double-stage depressed collector shows beam energy recovery efficiency 72% in static regime with taking into account of secondary electron emission from collector’s walls.   

Key words: computer code PARS, electron beam, electron gun, depressed klystron, collector, focusing magnetic field, beam optics, secondary electron emission.

References

1. Srivastava A. Microfabricated Terahertz Vacuum Electron Devices: Technology, Capabilities and Performance Overview. European Journal of Advances in Engineering and Technology. 2015. Vol.2. No.8. P.54-64.

2. Booske J.H. Plasma physics and related challenges of millimeterwave-to-terahertz and high power microwave generation. Phys. Plasmas. 2008. Vol. 15. No. 5. P.055502–055516.

3. Pasour J. et.al. Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz. IEEE Trans. Electron Devices. 2014. Vol. 61. No.6. P.1630.

4. Lü S. et al. Stability analysis of a planar multiple-beam circuit forW-band high-power extended-interaction klystron. IEEE Trans. Electron Devices. 2015. Vol. 62. No.9. P.3042-3048.

5. S. Chen S. et al. Particle-in-cell simulation and optimization of multigap extended output cavity for a W-band sheet-beam EIK.  IEEE Trans. Plasma Sci. 2014. Vol. 42. No.1. P.91-98.

6. Steer B., Roitman A., Horoyski P., Hyttinen M., Dobbs R., Berry D. Advantages of Extended Interaction Klystron technology at millimeter and sub-millimeter frequencies. 16th IEEE International Pulsed Power Conference. 2007. Albuquerque, NM, USA. P. 1049 - 1053. DOI: 10.1109/PPPS.2007.4652369

7. Toreev A.I., Fedorov V.K. Shortwave millimeter-wave extended interaction amplifier klystron. Prikladnaya Fizika – Applied Physics. 2011. No. 4. P. 109-114. (In Russian)

8. Tsarev V.A., Gorlin O.A., Nesterov D.A.. W-band multibeam oscillator with extended interation cavity. Zhurnal radioelektroniki  - Journal of Radio Electronics. 2015. No.12. Available at:   http://jre.cplire.ru/jre/dec15/11/text.pdf  (In Russian)

9. Rodyakin V.E., Pikunov V.M., Aksenov V.N. Computer code for numerical analysis of klystron type vacuum electronic devices. Zhurnal radioelektroniki  - Journal of Radio Electronics. 2019. No. 6. Available at:   http://jre.cplire.ru/jre/jun19/4/text.pdf  DOI: 10.30898/1684-1719.2019.6.421P. (In Russian). 

10.  Sandalov A.N., Rodyakin V.E. Computer code for analysis of electron beam dynamics in the klystron. Mezhvuzovskiy sbornik “Voprosy electronnoy techniki” - Interuniversity Bulletin “Issues of electronic technology”. Saratov. 1988. 15 p. (In Russian)

11.  Sandalov A.N., Pikunov V.M., Rodyakin V.E. Faillon G., Thaler Y. Animation of Nonlinear Electron-Wave Interaction in Klystrons. KEK report 1/1997. P.185-194. URL: https://www.researchgate.net/publication/341600037_Animation_of_Nonlinear_Electron-Wave_Interaction_in_Klystrons  

12.  Ding Y., Xiao X., Rodyakin V.E., Sandalov A.N. Theoretical and experimental investigations of the high power MBK, based on 2.5 D Arsenal - MSU Computer Code. Proc. of the 2nd ICMMWT. September 2000, Beijing, China, P.299-302. URL: https://ieeexplore.ieee.org/abstract/document/895680

13.  Shen B., Ding Y., Sandalov A.N., Rodyakin V.E., Chashurina A.N. Computer simulation of 100KW L-band  CW broadband multi-beam klystron. IVESC2004 – 5th International Vacuum Electron Sources Conference Proc. China, Beijing, 2004. P.312-314. URL: https://ieeexplore.ieee.org/abstract/document/1414252

14.  Shen B., Ding Y., Zhang Z. et al. Research and Development of S-Band High Power Multibeam Klystron. IEEE Trans. Electron Devices. 2014. Vol. 61. No.6. P.1848-1853. DOI: 10.1109/TED.2014.2305712

15.  Alyamovskiy I.V. Electronnye puchki i electronnye pushki. [Electron beams and electron guns]. Moscow, Sovetskoe Radio Publ. 1966. 454 p. (In Russian)

16.  Sandalov A.N., Rodyakin V.E. Collectors of microwave devices with longitudinal interaction. Zarubezhnaya Radioelectronika - Foreign Radio Electronics. 1984. No. 9. P. 63-76. (In Russian)

17.  Lopukhin V.M., Sandalov A.N., Rodyakin V.E. Theoretical research of microwave devices collectors. Izvestiya Vuzov. Radioelectronika – Bulletin of Universities. Radio Electronics. 1985. No.10. P.1-19. URL: https://www.researchgate.net/publication/253786613_Theoretical_study_of_collector_systems_for_microwave_devices_Review (In Russian)

18. Vaughan J.R.M., A new formula for secondary emission yield. IEEE Trans. Electron Devices, 1989. Vol. 36. No.9. P.1963-1967.

19. Valfells A., Singh A., Kolander M.J.,  Granatstein V.L. Advacements in Codes for Computer Aided Design of Depressed Collectors and Tracing of Backscattered Electrons–Part II. IEEE Trans. of Plasma Sci. 2002. Vol. 30. No.3. P.1271-1276. Available at:  kennarar.ru.is/av/BSCAT_I.pdf

20. Belugin V.M., Vasiliev A.E., Vetrov V.V., Parfenova A.S., Pikunov V.M.  Secondary Electrons' Cascade Modelling for Collector. Electromagnitnye volny i electronnye systemy - Electromagnitic Waves and Electronic Systems. 2007. Vol. 12. No.11. P. 61-68. (In Russian)

 

For citation:

Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Electron optical system of W-band high power extended interaction klystron. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at http://jre.cplire.ru/jre/jun20/3/text.pdf.  DOI https://doi.org/10.30898/1684-1719.2020.6.3