Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.6.4

UDC 621.385.624

 

Interaction region of the high power W-band extended interaction klystron

 

 V. Y. Rodyakin 1, V. M. Pikunov 1, V. N. Aksenov 2

1 Institute on Laser and Information Technologies - Branch of the Federal Scientific Research Centre «Crystallography and Photonics» RAS, 140700 Shatura, Svyatoozerskaya Str, 1

2 Physics Department and International Laser Center of Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, 1

 

The paper was received on May 23, 2020

 

Abstract. We present the results of theoretical analysis of interaction region of the high power W-band extended interaction klystron. The computer code PARS is used for numerical simulation. As result of optimization, the design of extended interaction klystron with 7 multigap cavities has been developed.  The klystron provides output power about 7 kW with 50 dB gain, 32% electronic efficiency and 43% total efficiency with depressed collector. Developed double-stage depressed collector shows beam energy recovery efficiency 63% in dynamic regime with taking into account of secondary electron emission from collector’s walls.   

Key words: computer code PARS, electron beam, multi-gap cavity, extended interaction klystron, depressed collector, focusing magnetic field, electronic efficiency, electron bunch.

References

1. Srivastava A. Microfabricated Terahertz Vacuum Electron Devices: Technology, Capabilities and Performance Overview. European Journal of Advances in Engineering and Technology. 2015. Vol.2. No.8. P.54-64

2. Steer B., Roitman A., Horoyski P., Hyttinen M., Dobbs R., Berry D. Advantages of extended interaction klystron technology at millimeter and sub-millimeter frequencies. 16th IEEE International Pulsed Power Conference. 2007. Albuquerque, NM, USA. P. 1049 - 1053. DOI: 10.1109/PPPS.2007.4652369

3. Pasour J. et.al. Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz. IEEE Trans. Electron Devices. 2014. Vol. 61. No.6. P.1630.

4. Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Electron optical system of W-band high power extended interaction klystron. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at http://jre.cplire.ru/jre/jun20/3/text.pdf.  DOI 10.30898/1684-1719.2020.6.3

5. Rodyakin V.E., Pikunov V.M., Aksenov V.N. Computer code for numerical analysis of klystron type vacuum electronic devices. Zhurnal radioelektroniki  - Journal of Radio Electronics. 2019. No. 6. Available at:   http://jre.cplire.ru/jre/jun19/4/text.pdf  DOI: 10.30898/1684-1719.2019.6.4

6. Booske J.H. Plasma physics and related challenges of millimeterwave-to-terahertz and high power microwave generation. Phys. Plasmas. 2008. Vol. 15. No. 5. P.055502–055516.

7. Sandalov A.N., Pikunov V.M., Rodyakin V.E.  Power extraction in relativistic klystron amplifier. SPIE proc. 1995. Vol. 2557. P. 434-442.  URL: https://www.researchgate.net/publication/253153010_Power_extraction_in_relativistic_klystron_amplifier

8. Rodyakin V.E., Bogolyubov A.N., Pikunov V.M., Svetkin M.I. Effects of Cavities RF Field Radial Non-Uniformity on Multiple-Beam Klystron Efficiency. PIERS 2017. St Petersburg, Russia. 22 - 25 May 2017. P.2734-2737.

URL: https://ieeexplore.ieee.org/document/8262217

 

For citation:

Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Interaction region of the high power W-band extended interaction klystron. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at http://jre.cplire.ru/jre/jun20/4/text.pdf.  DOI: https://doi.org/10.30898/1684-1719.2020.6.4