Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 6
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.6.8

UDC 621.385.624

 

Depressed collector of the high power W-band extended interaction klystron

 

 V. Y. Rodyakin 1, V. M. Pikunov 1, V. N. Aksenov 2

1 Institute on Laser and Information Technologies - Branch of the Federal Scientific Research Centre «Crystallography and Photonics» RAS, 140700 Shatura, Svyatoozerskaya Str, 1

2 Physics Department and International Laser Center of Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, 1

 

The paper was received on June 2, 2020

 

Abstract. We present the results of theoretical analysis of depressed collector of the high power W-band extended interaction klystron. The computer code PARS was used for numerical simulation taking into account the secondary electron emission and backscattering from the collector walls surfaces. As a result of optimization, the design of double-stage depressed collector has been developed which provides spent beam energy recovery efficiency 72% in the  static regime and 63% in the dynamic regime of klystron operation.

Key words: PARS computer code, electron beam, electron gun, depressed klystron, collector, focusing magnetic field, beam optics, secondary electron emission.

References

1. Booske J.H. Plasma physics and related challenges of millimeterwave-to-terahertz and high power microwave generation. Phys. Plasmas. 2008. Vol. 15. No. 5. P.055502–055516.

2. Steer B., Roitman A., Horoyski P., Hyttinen M., Dobbs R., Berry D. Advantages of Extended Interaction Klystron technology at millimeter and sub-millimeter frequencies. 16th IEEE International Pulsed Power Conference. 2007. Albuquerque, NM, USA. P. 1049 - 1053. DOI: 10.1109/PPPS.2007.4652369

3. Pasour J. et.al. Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz. IEEE Trans. Electron Devices. 2014. Vol. 61. No.6. P.1630.

4. Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Electron optical system of W-band high power extended interaction klystron. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at: http://jre.cplire.ru/jre/jun20/3/text.pdf.  DOI: 10.30898/1684-1719.2020.6.3

5. Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Interaction region of the high power W-band  extended interaction klystron. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at: http://jre.cplire.ru/jre/jun20/4/text.pdf.  DOI: 10.30898/1684-1719.2020.6.4

6. Rodyakin V.E., Pikunov V.M., Aksenov V.N. Computer code for numerical analysis of klystron type vacuum electronic devices. Zhurnal radioelektroniki  - Journal of Radio Electronics. 2019. No. 6. Available at:   http://jre.cplire.ru/jre/jun19/4/text.pdf  DOI: 10.30898/1684-1719.2019.6.4

7. Lopukhin V.M., Sandalov A.N., Rodyakin V.E. Theoretical research of microwave devices collectors. Izvestiya Vuzov. Radioelectronika – Bulletin of Universities. Radio Electronics. 1985. No.10. P.1-19. URL: https://www.researchgate.net/publication/253786613_Theoretical_study_of_collector_systems_for_microwave_devices_Review (In Russian)

8. Sandalov A.N., Rodyakin V.E. Collectors of microwave devices with longitudinal interaction. Zarubezhnaya Radioelectronika - Foreign Radio Electronics. 1984. No. 9. P. 63-76. (In Russian)

 

For citation:

Rodyakin V.Y., Pikunov V.M., Aksenov V.N. Depressed collector of the high power W-band extended interaction klystron.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 6. Available at http://jre.cplire.ru/jre/jun20/8/text.pdf.  DOI: https://doi.org/10.30898/1684-1719.2020.6.8