Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 6
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.6.4

UDC  621.396.93

 

DIFFERENTIAL SPACE-TIME BLOCK CODING METHOD FOR APPLICATION IN MOBILE RADIO COMMUNICATION SYSTEMS USING MIMO TECHNOLOGY

 

M. S. Tokar, I. V. Ryabov

 1 Pridnestrovian State University of Taras Shevchenko, October 25 str., 128, Tiraspol 3300, Moldova

2 Volga State University of Technology, Yoshkar-Ola, Lenin sq., 3, Yoshkar-Ola 424000, Russia

 

The paper was received on May 21, 2021, after correction – on June 10, 2021

 

Abstract. In radio communication systems, when implementing coherent types of reception, it is assumed that the receiver knows information about the state of the communication channel, which is achieved by introducing signal redundancy (pilot signals). The frequency of sending pilot signals depends on factors that change the state of the communication channel, one of which is the high speed of movement of mobile stations. The use of pilot signals not only hinders the efficient use of the radio frequency resource, but also, in the case of fast fading, does not allow the channel to be estimated and tracked with the required accuracy. These disadvantages can be eliminated by using the differential transmission method, for the implementation of which there is no need to know information about the state of the channel. The application of the principles of differential transmission to space-time coding does not find sufficiently effective solutions that combine low computational complexity and energy efficiency of differential coding methods.

Key words: MIMO system, differential transmission, relative phase modulation, complex orthogonal form, incoherent receive, space-time coding.

References

1. Yang S., Hanzo L. Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Commun. Surveys & Tutorials. 2015. Vol.17. No.4. P.1941–1988. https://doi.org/10.1109/comst.2015.2475242

2. Alamouti S.M. A Simple Transmit Diversity Technique for Wireless Communications. IEEE  J. Select. Areas in Comm. 1998. Vol.16. No.8. P.1451–1458. https://doi.org/10.1109/49.730453

3. The CDMA 2000 Candidate Submission, TIA 45.5 Subcommittee, June 2, 1998. Draft.

4. Space-Time Block Coded Transmit Antenna Diversity for WCDMA, Texas Instruments Inc., Helsinki, Finland, UMTS SMG2-LI, Tech. doc. 662/1998. P.14-18.

5. Grigor'ev V.A., Hvorov I.A., Aksenov V.O., Shhesnjak A.S. MIMO-letnoe videnie. Radiochastotnyj spektr  [Radio frequency spectrum]. 2015. No.2. P.22–27. (In Russian)

6. Akyildiz I.F., Gutierrez-Estevez D.M., Reyes E.C. The evolution to 4G cellular systems: LTE-Advanced. Physical Communication. 2010. Vol.3. P.217–244. https://doi.org/10.1016/j.phycom.2010.08.001

7. Hassan N., Fernando X. Massive MIMO Wireless Networks: An Overview. Electronics. 2017. Vol.6. No.3. P.63. https://doi.org/10.3390/electronics6030063

8. Moby P.M., Athira K.R., Axamol C.C., Sreeshma P.S. Enhancement of Channel Potential and Spectral Efficiency using Hyper-MIMO In 5G. AJAST. 2018. Vol.2. P.71–76.

9. Marzetta T.L. Non-cooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wireless Commun.  2010. Vol.9. P.3590–3600. https://doi.org/10.1109/twc.2010.092810.091092

10. Zhang J., Zhang B., Chen S., Mu X., El-Hajjar M., and Hanzo L. Pilot Contamination Elimination for Large-Scale Multiple-Antenna Aided OFDM Systems. IEEE J. Select. Top. Signal Process. 2014. Vol.8. P.759–772. https://doi.org/10.1109/jstsp.2014.2309936

11. Gorjachkin O.V. Metody slepoj obrabotki signalov i ih prilozhenija v sistemah radiotehni-ki i svjazi [Blind signal processing methods and their applications in radio engineering and communication systems]. Moscow,  Radio i svjaz' Publ. 2003. 230 p. (In Russian)

12. Berezovskij A.A., Gorjachkin O.V. Blind identification of multidimensional signals and its application in MIMO communication systems. Elektrosvjaz'. [Telecommunication]. 2017. No.1. P.30–35. (In Russian)

13. Krejndelin V.B., Starovojtov M.Ju. Prediction of radio channel parameters and selection of antennas at reception in MIMO systems operating in the LTE standard. Elektrosvjaz' [Telecommunication]. 2017. No.12. P.22–27. (In Russian)

14. Poborchaja N.E., Pestrjakov A.V. Estimation and compensation of signal distortions in the receiving path of MIMO systems. Elektrosvjaz' [Telecommunication]. 2017. No.12. P.42–48. (In Russian)

15. Petrovich N.T. Sposob telegrafnoj provodnoj i radiosvjazi fazomanipulirovannymi kole-banijami [Method of wire telegraph and radio communication with phase-shift keyed oscillations]. Certificate of authorship No.105692. 12.02.1954. (In Russian)

16. Petrovich N.T. Novye sposoby osushhestvlenija fazovoj telegrafii [New ways of implementing phase telegraphy]. Moscow, Radiotehnika Publ. 1957. No.10. P.7–9. (In Russian)

17. Skljar B. Cifrovaja svjaz'. Teoreticheskie osnovy i prakticheskoe primenenie [Digital communication. Theoretical foundations and practical application]. Moscow, Vil'jams Publ. 2003. 1104 p. (In Russian)

18. Zjuko A.G. Fal'ko A.I., Panfilov I.P., Banket V.L., Ivashhenko P.V. Pomehoustojchivost' i jeffektivnost' sistem peredachi informacii [Noise immunity and efficiency of information transmission systems]. Moscow, Radio i svjaz' Publ. 1985. 272 p. (In Russian)

19. Petrovich N.T. Otnositel'nye metody peredachi informacii [Relative methods of transferring information] Moscow, Kniga-M Publ. 2003. 108 p. (In Russian)

20. Goldsmith A. Wireless Communications. Cambridge University Press. 2005. 644 p. https://doi.org/10.1017/CBO9780511841224

21. Tarokh V., Jafarkhani H. A differential detection scheme for transmit diversity. IEEE J. Select. Areas Commun. 2000. Vol.18. No.7. P.1169–1174. https://doi.org/10.1109/49.857917

22. Hughes B.L. Differential space-time modulation. IEEE Trans. Inform. Theory, 2000. Vol.16. No.7. P.2567–2578. https://doi.org/10.1109/18.887864

23. Marzetta T.L., Hochwald B.M. Capacity of a mobile multiple-antenna communication link in rayleigh flat fading. IEEE Trans. Inform. Theory. 1999. Vol.45. No.1.  P.139–157. https://doi.org/10.1109/18.746779

24. Hochwald B.M., Marzetta T.L. Unitary space-time modulation for multiple-antenna communications in rayleigh flat fading. IEEE Trans. Inform. Theory. 2000. Vol.46. No.2. P.543–564. https://doi.org/10.1109/18.825818

25. Hochwald B.M., Sweldens W. Differential unitary space-time modulation. IEEE Trans. Commun. 2000. Vol.48. No.12. P.2041–2052. https://doi.org/10.1109/26.891215

26. Bian Y., Cheng X., Wen M., Yang L., Poor H.V., Jiao B. Differential Spatial Modulation. IEEE Trans. Veh. Tech. 2015. Vol.64. No.7. P.3262-3268. https://doi.org/10.1109/TVT.2014.2348791

27. Xu C., Rajashekar R., Ishikawa N., Sugiura S., Hanzo L. Single-RF Index Shift Keying Aided Differential Space-Time Block Coding. IEEE Trans. Signal Process. 2018. Vol.66. No.3. P.773-788. https://doi.org/10.1109/TSP.2017.2768019

28. Xu C., Zhang P., Rajashekar R., Ishikawa N., Sugiura S., Wang L., Hanzo L. Finite-Cardinality Single-RF Differential Space-Time Modulation for Improving the Diversity-Throughput Tradeoff. IEEE Trans. Commun. 2019. Vol.67. No.1. P.318-335. https://doi.org/10.1109/TCOMM.2018.2869812

29. Ishikawa N., Sugiura S. Rectangular Differential Spatial Modulation for Open-Loop Noncoherent Massive-MIMO Downlink. IEEE Trans. Wirel. Commun. 2017. Vol.16. No.3. P.1908-1920. https://doi.org/10.1109/TWC.2017.2657497

30. Bhatnagar M.R., Hjorungnes A., Song L., Bose R. Double-Differential decode and forward cooperative communications over Nakagami-m channels with carrier offsets. 2008 IEEE Sarnoff Symposium. Princeton, NJ, 2008. P.1–5. https://doi.org/10.1109/SARNOF.2008.4520082

31. Xu C. et al. Sixty Years of Coherent Versus Non-Coherent Tradeoffs and the Road From 5G to Wireless Futures. IEEE Access. 2019. Vol.7. P.178246-178299. https://doi.org/10.1109/ACCESS.2019.2957706

32. Popovski P. et al. Final report on the METIS 5G system concept and technology roadmap. Apr. 30, 2015. [online]. https://www.metis2020.com/wp-content/uploads/deliverables/METIS_D6.6_v1.pdf

33. Tokar M.S. Development of a Differential Block Coding Method for Application in Mobile Radio Communication Systems Using MIMO Systems. Technology audit and production reserves. 2019. Vol.4. No.2(48). P.28–33. https://doi.org/10.15587/2312-8372.2019.179210

34. Tarokh V., Jafarkhani H., Calderbank A.R. Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory. 1999. Vol.45. No.5. P.1456–1467. https://doi.org/10.1109/18.771146.

 

For citation:

Tokar M.S, Ryabov I.V. Differential space-time block coding method for application in mobile radio communication systems using MIMO technology. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.6. https://doi.org/10.30898/1684-1719.2021.6.4 (In Russian)