Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 6
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.6.3

UDC: 621.391.8

 

Structural-multipath approach to the development
of a space-time model of a single-mode

decameter communication channel with diffuse multipath

 

V.P. Pashintsev 1, S.A. Koval 2, V.A. Tsimbal 3,
V.E. Toiskin 3, M.A. Senokosov 1, A.D. Skorik 4

 

1 North Caucasus Federal university
355017, Russia, Stavropol, Pushkina str., 1

2 Military communications academy named after the Marshal
of the Soviet Union S. M. Budenny
194064, Russia, Saint Petersburg, Tikhoretsky av., 3

3 Military academy of strategic missile forces (branch in Serpukhov, Moscow region)

142210, Russia, Serpukhov, Brigadnaya str., 17

4 Russian institute of powerful radio engineering
199178, Russia, Saint Petersburg, 11 liniya V.O. str., 66

 

The paper was received April 29, 2022.

 

Abstract. A structural-multipath approach has been developed for constructing a spatiotemporal model of a single-mode decameter communication channel, which makes it possible to determine the two-frequency spatial correlation function of a single-mode decameter communication channel and to establish the dependences of frequency and spatial correlation intervals of fading on the operating frequency, diffuse ionosphere parameters, and radio link geometry. The method for constructing this model of a communication channel using the structural multipath approach includes four stages: 1) development of a multibeam spatiotemporal decameter model of a communication channel; 2) development of a radiophysical space-time model of radio wave propagation in a decameter radio link, taking into account the influence of inhomogeneities (diffusion) of the ionosphere based on the method of smooth perturbations; 3) identification of multipath and radiophysical models to determine the two-frequency spatial correlation function of the decameter of the communication channel; 4) determining the dependence of frequency and spatial correlation intervals of fading in a single-mode decameter communication channel on the choice of operating frequency, diffuse ionosphere parameters, and radio link geometry.

Key words: decameter communication channel, ionosphere, small-scale irregularities, diffuseness, amplitude-phase front, multipath, selective fading, frequency and spatial correlation intervals.

Financing: This work was supported by the Russian Science Foundation under project no. 22-21-00768 (https://rscf.ru/project/22-21-00768).

Corresponding author: Koval Stanislav Andreevich, _bober_@mail.ru

References

1. Berezovsky V.A., Dulkeit I.V., Savitsky O.K. Sovremennaya dekametrovaya radiosvyaz: oborudovaniye, sistemy i kompleksy [Modern decameter radio communication: equipment, systems and complexes]. Moscow, Radio engineering Publ. 2011. 444 p. (In Russian)

2. Fabrizio G.A. High frequency over the horizon radar: Fundamental principles, signal processing, and practical application. New York, McGraw-Hill Publ. 2013. 944 p.

3. Chernov Yu.A. Spetsialnyye voprosy rasprostraneniya radiovoln v setyakh svyazi i radioveshchaniya. [Special questions of propagation of radio waves in communication and broadcasting networks]. Moscow, Tekhnosfera Publ. 2018. 688 p. (In Russian)

4. Pashintsev V.P., Kolosov L.V., Tishkin S.A., Antonov V.V. Application of the phase-screen theory for developing a model of a one-hop decameter communication link. Journal of Communications Technology and Electronics. 1996. V.41. №1. P.16-21.

5. Pashintsev V.P., Tishkin S.A., Ivannikov A.I., Borovlev I.I. Calculating the fading depth parameter in single-beam decameter radio link. Radioelectronics and Communications Systems. 2001. V.44. №12. P.57-65.

6. Blaunstein N., Plohotniuc E. Ionosphere and applied as pects of radio communication and radar. New York. Taylor and Frances Publ., 2008. 577 p.

7. Khmelnitskiy E.A. Otsenka realnoy pomekhozatshitshennosti priema signalov v KV diapazone. [Assessment of real noise immunity of reception of signals in HF range]. Moscow, Svyaz Publ. 1975. 232 p. (In Russian)

8. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam [Transmission of discrete messages over radio channels]. Moscow, Radio i svyaz Publ. 1982. 304 p. (In Russian)

9. Stein S., Jones J. Modern Communication Principles. McGraw-Hill Telecommunications Publ. 1967. 382 p.

10. Pashintsev V.P., Omelchuk A.V., Koval S.A., Galushko Yu.I. Method of irregularity intensity value determination according to ionosphere sounding. Dvoynie tekhnologii [Dual technology]. 2009. №1. P.38-42 (In Russian)

11. Klovskiy D.D., Kontorovich V.Ya., Shirokov S.M. Modeli nepreryvnykh kanalov svyazi na osnove stokhasticheskikh differentsialnykh uravneniy [Models of continuous communication channels based on stochastic differential equations]. Moscow, Radio i svyaz Publ. 1984. 248 p. (In Russian)

12. Klovskiy D.D., Soyfer S.A. Obrabotka prostranstvenno-vremennykh signalov [Processing of space-time signals]. Moscow, Svyaz Publ. 1976. 208 p. (In Russian)

13. Galkin A.P., Lapin A.N., Samoylov A.G. Modelirovaniye kanalov sistem svyazi [Modeling of channels of communication systems]. Moscow, Svyaz Publ. 1979. 96 p. (In Russian)

14. Barabashov B.G., Vertogradov G.G. Dynamic adaptive structural-physical model of the ionospheric radio channel. Matematicheskoe modelirovanie [Mathematical models and computer simulations]. 1996. V.8. №2. P.3-18. (In Russian)

15. Barabashov B.G., Vertogradov G.G. Dynamic adaptive model of a connected decameter channel. Radiotekhnika [Radio engineering]. 1995. 12. P.29-32. (In Russian)

16. Rytov S.M., Kravtsov Yu.N., Tatarskiy V.I. Vvedeniye v statisticheskuyu radiofiziku. Chast 2. Sluchaynyye polya [Introduction to statistical radiophysics. Part II. Random fields]. Moscow, Nauka Publ. 1978. 464 p. (In Russian)

17. Maslov O.N., Pashintsev V.P. Modeli transionosfernyh radiokanalov i pomekhoustojchivost' sistem kosmicheskoj svyazi [Models of transionospheric radio channels and noise stability of systems of space communication]. Samara, Volga region state academy of telecommunications and informatics Publ. 2006. 357 p. (In Russian)

18. Pashintsev V.P., Solchatov M.E., Gakhov R.P., Yeremin A.M. Model of space-time channel of space communication. Fizika volnovykh protsessov i radiotekhnicheskie sistemy [Physics of wave processes and radio engineering systems]. 2003. 5. P.64-69. (In Russian)

19. Falkovich S.Ye., Khomyakov E.N. Statisticheskaya teoriya izmeritelnykh radiosistem [Statistical theory of measuring radio systems.]. Moscow, Radio i svyaz Publ. 1981. 288 p. (In Russian)

20. Yeh K.C., Liu C.H. Radio wave scintillations in the ionosphere. Proceedings of the Institute of Electrical and Electronic Engineers. 1982. V.70. 4. P.324-360.

21. Liu C.H., Wernik A.W. A characterization of transionospheric fading communication channel. IEEE Transactions on Communications. 1975. V.23. P.773-776.

22. Isimaru A. Wave Propagation and Scattering in Random Media. New York, Academic Publ. 1978. 317 p.

23. Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and multiplies]. Moscow, Nauka Publ. 1971. 1108 p. (In Russian)

24. Pashintsev V.P., Skorik A.D., Koval S.A., Alekseev D.V., Senokosov M.A. Algorithm of calculation of an interval of frequency correlation of the short-wave radio line taking into account sphericity and small-scale not uniformity of an ionosphere. Sistemy upravleniya, svyazi i bezopasnosti [Systems of control, communication and security]. 2020. №2. P.49-72. https://doi.org/10.24411/2410-9916-2020-10203 (In Russian)

25. Pashintsev V.P., Tishkin S.A., Smirnov A.A., Borovlev I.I. Equivalent way of distribution of a decameter wave in a spherically layered ionosphere. Zhurnal radioelectroniki [Journal of radio electronics]. 2001. №8. http://jre.cplire.ru/jre/aug01/1/text.html (In Russian)

26. Kalinin A.I., Cherenkova L.E. Rasprostranenie radiovoln i rabota radiolinij [Distribution of radio waves and work of radio lines]. Moscow, Svyaz Publ. 1971. 439 p. (In Russian)

27. Pashintsev V.P., Koval S.A., Kabanovich S.G., Vanyushin V.M. Refined expression for calculating the interval of frequency correlation of fades in a single-beam high-wave radio line. Proceedings of LXXVI International Scientific Conference «Radioelektronnyye ustroystva i sistemy dlya infokommunikatsionnykh tekhnologiy – REUS’2021» [«The radio-electronic devices and systems for the infocommunication technologies – REDS’2021»]. Moscow, 2021. P.102-107 (In Russian)

28. Nemirovskiy A.S. Borba s zamiraniyami pri peredache analogovykh signalov [Dealing with fading in analog transmission]. Moscow, Radio i svyaz Publ. 1984. 208 p. (In Russian)

29. Koval S.A., Pashintsev V.P., Kopytov V.V., Manaenko S.S., Belokon D.A. Method for determining the fading frequency correlation interval in a single-beam decameter radio link. Sistemy upravleniya, svyazi i bezopasnosti [Systems of control, communication and security]. 2022. №1. P.67-103. https://doi.org/10.24412/2410-9916-2022-1-67-103 (In Russian)

30. Pashintsev V.P., Koval S.A., Potyagov D.A., Skorik A.D., Senokosov M.A. Refined method for determining the spatial correlation interval of the fading in a single-beam decameter radio link. Zhurnal Radioelektroniki [Journal of radio electronics]. 2021. №2. https://doi.org/10.30898/1684-1719.2021.2.6 (In Russian)

31. Pashintsev V.P., Koval S.A., Chipiga A.F., Skorik A.D. Analytical method for determining the interval of spatial correlation of fading in a single-beam decameter radio line. Telecommunications and Radio Engineering. 2021. V.80. №2. P. 89-104. https://doi.org/10.1615/TelecomRadEng.2021038432

For citation:

Pashintsev V.P., Koval S.A., Tsimbal V.A., Toiskin V.E., Senokosov M.A., Skorik A.D. Structural-multipath approach to the development of a space-time model of a single-mode decameter communication channel with diffuse multipath. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2022. №6. https://doi.org/10.30898/1684-1719.2022.6.3