Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. ¹6
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.6.8

UDC: 621.396.96

 

MILITARY OBJECTS DETECTION

USING A CONVOLUTIONAL NEURAL NETWORK

ON RADAR IMAGES
FORMED IN JAMMING CONDITIONS

 

I.F. Kupryashkin

 

Military Educational and Scientific Center of the Air Force

«N.E. Zhukovsky and Y.A. Gagarin Air Force Academy» (Voronezh)
394064, Russia, Voronezh, Starykh Bolshevikov St., 64

 

The paper was received May 17, 2022.

 

Abstract. The objects detector on radar images description is given, which implements the local inhomogeneities detection using the CFAR algorithm with their subsequent two-alternative classification («object» or «background») by a deep convolutional neural networkþ. Using the MSTAR dataset, it was shown that in the case of a homogeneous background, the detection results can be considered satisfactory if SNR on image is more than 5 dB, and completely disrupted if SNR less then minus 5 dB.

Key words: deep convolutional neural network, transfer learning, radar image, classification accuracy, object detection.

Corresponding author: Kupryashkin Ivan Fedorovich, ifk78@mail.ru

References

1. Alzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A., Duan Y., Al-Shamma O., Santamaria J., Fadhel M.A., Al-Amidie M., Farhan L. Review Of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. Journal of Big Data. 2021. V.8. ¹53. https://doi.org/10.1186/s40537-021-00444-8

2. Rawat W., Wang Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation. 2017. V.29. P.2352-2449. https://doi.org/10.1162/neco_a_00990

3. Sozykin A.V. An overview of methods for deep learning in neural networks. Vestnik YUUrGU. Seriya «Vychislitel'naya matematika i informatika» [Bulletin of the South Ural State University. Series «Computational Mathematics and Computer Science»]. 2017. V.6. ¹3. P.28-59. https://doi.org/10.14529/cmse170303 (In Russian)

4. Zhu X., Montazeri S., Ali M., Hua Yu., Wang Yu., Mou L., Shi Yi., Xu F., Bamler R. Deep Learning Meets SAR. ArXiv. 2020. https://arxiv.org/abs/2006.10027

5. Kupryashkin I.F., Likhachev V.P., Ryazantsev L.B. Malogabaritnyye mnogofunktsional'nyye RLS s nepreryvnym chastotno-modulirovannym izlucheniyem [Small-sized multifunctional Frequency-Modulated Continuous Wave Radars]. Moscow, Radiotehnika Publ. 2020. 279 p. (In Russian)

6. Kupryashkin I.F., Likhachev V.P. Kosmicheskaya radiolokatsionnaya s"yemka zemnoy poverkhnosti v usloviyakh pomekh [Earth's surface space radar imaging in jamming conditions]. Voronezh, Nauchnaya Kniga Publ. 2014. 460 p. (In Russian)

7. Wang H., Chen S., Xu F., Jin Y.-Q. Application of Deep-Learning Algorithms to MSTAR data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2015. P.3743-3745. https://doi.org/10.1109/IGARSS.2015.7326637

8. Chen S., Wang H., Xu F., Jin Y.-Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Transaction Geoscience and Remote Sensing. 2016. V.54. ¹8. P.4806-4817. https://doi.org/10.1109/TGRS.2016.2551720

9. Anas H., Majdoulayne H., Chaimae A., Nabil S.M. Deep Learning for SAR Image Classification. Intelligent Systems and Applications. 2020. P.890-898. https://doi.org/10.1007/978-3-030-29516-5_67

10. Chen S., Wang H. SAR Target Recognition Based on Deep Learning. 2014 International Conference on Data Science and Advanced Analytics (DSAA). 2014. P.541-547. https://doi.org/10.1109/DSAA.2014.7058124

11. Coman C., Thaens R. A Deep Learning SAR Target Classification Experiment on MSTAR Dataset. 2018 19th International Radar Symposium (IRS). 2018. P.1-6. https://doi.org/10.23919/IRS.2018.8448048

12. Furukawa H. Deep Learning for End-to-End Automatic Target Recognition from Synthetic Aperture Radar Imagery. ArXiv. 2018. https://arxiv.org/abs/1801.08558

13. Profeta A., Rodriguez A., Clouse H.S. Convolutional Neural Networks for Synthetic Aperture Radar Classification. Proc. SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, 98430M. 14 May 2016. https://doi.org/10.1117/12.2225934

14. Wang Z., Xu X. Efficient deep convolutional neural networks using CReLU for ATR with limited SAR images. The Journal of Engineering. 2019. V.2019. ¹21. P.7615-7618. https://doi.org/10.1049/joe.2019.0567

15. Wilmanski M., Kreucher C., Lauer J. Modern Approaches in Deep Learning for SAR ATR. Proc. SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, 98430N. 14 May 2016. https://doi.org/10.1117/12.2220290

16. Xie Yi., Dai W., Hu Z., Liu Yi., Li C., Pu X. A Novel Convolutional Neural Network Architecture for SAR Target Recognition. Journal of Sensors. 2019. https://doi.org/10.1155/2019/1246548

17. Xinyan F., Weigang Z. Research on SAR Image Target Recognition Based on Convolutional Neural Network. Journal of Physics: Conference Series. 2019. V.1213. ¹4. https://doi.org/10.1088/1742-6596/1213/4/042019

18. Zhai J., Dong G., Chen F., Xie X., Qi C., Li L. A Deep Learning Fusion Recognition Method Based On SAR Image Data. 2018 International Conference on Identifiation, Information and Knowledge in the Internet of Things. Procedia Computer Science. 2019. V.147. P.533-541. https://doi.org/10.1016/j.procs.2019.01.229

19. Gao F., Huang T., Sun J., Wang J., Hussain A., Yang E. A New Algorithm of SAR Image Target Recognition based on Improved Deep Convolutional Neural Network. Cognitive Computation. 2019. V.11. P.809-824. https://doi.org/10.1007/s12559-018-9563-z

20. Malmgren-Hansen, D., Engholm, R., Østergaard Pedersen, M. Training Convolutional Neural Networks for Translational Invariance on SAR ATR.  Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar. 2016. P.459-462.

21. Borodinov A.A., Myasnikov V.V. Comparison of classification algorithms for radar images with different preprocessing methods using the example of the MSTAR base. Sbornik trudov IV mezhdunarodnoi konferentsii i molodezhnoi shkoly «Informatsionnye tekhnologii i nanotekhnologii» (ITNT-2018) [Proceedings of the IV International Conference and Youth School «Information Technology and Nanotechnology» (ITNT-2018)]. Samara, Novaya tekhnika. 2018. P.586-594. (In Russian)

22. Bilenko S. V., Cheredeyev K. Yu., Zograbyan M. K. Prospects for the use of deep neural networks in radiolocation. Voprosy radioelektroniki [Issues of Radioelectronics]. 2017. ¹1. P.57-63. (In Russian)

23. Kazachkov E.A., Matyugin S.N., Popov I.V., Sharonov V.V. Detection and classification of small-scale objects in images obtained by synthetic-aperture radar stations. Vestnik Koncerna VKO «Almaz – Antej» [Journal of «Almaz – Antey» Air and Space Defence Corporation]. 2018. ¹1. P.93-99 (In Russian)

24. Chang Y.-L., Anagaw A., Chang L., Wang Y.-C., Hsiao C.-Y., Lee W.-H. Ship Detection Based on YOLOv2 for SAR Imagery. Remote Sensing. 2019. V.11. P.786. https://doi.org/10.3390/rs11070786

25. Cui Z., Tang C., Cao Z., Liu N. D-ATR for SAR Images Based on Deep Neural Networks. Remote Sensing. 2019. V.11. P.906. https://doi.org/10.3390/rs11080906

26. Chorbaa N.A., Le Anh Tu, Tolstoy I.M. Comparative Analysis of Methods for Detecting Objects on Radar Images Using Neural Networks. Nauchnyj rezul'tat. Informacionnye tekhnologii [Research Result. Information Technologies]. 2020. V.5. No4. P.15-25. https://doi.org/10.18413/2518-1092-2020-5-4-0-3 (In Russian)

27. El-Darymli Kh., McGuire P., Power D., Moloney C. Target Detection in SAR Imagery: a state-of-the-art-survey. Journal of Applied Remote Sensing. 2013. V.7. https://doi.org/10.1117/1.JRS.7.071598

28. Blacknell D., Vignaud L. ATR of Ground Targets: Fundamentals and Key Challenges. Radar Automatic Target Recognition and Non-Cooperative Target Recognition. P.5-36. https://doi.org/10.1049/PBRA033E

29. Sirota A.A., Mitrofanova E.Yu., Milovanova A.I. Analysis of algorithms for searching objects in images using various modifications of convolutional neural networks. Vestnik VGU, Seriya «Sistemnyy analiz i informatsionnyye tekhnologii» [Proceedings of Voronezh State University]. 2019. ¹3. P.123-137. https://doi.org/10.17308/sait.2019.3/1313 (In Russian)

30. Beresnev A.P., Zoev I.V., Markov N.G. Research on convolutional neural networks of YOLO class for mobile object detection system. GraphiCon 2018 Komp'yuternoe zrenie [GraphiCon 2018 Computer Vision]. 2018. P.196-199. (In Russian)

31. Chen L., Zhou L., Liu J. Aircraft Recognition from Remote Sensing Images Based on Machine Vision. Journal of Information Processing Systems. 2020. V.16. ¹4. P.795-808. https://doi.org/10.3745/JIPS.02.0136

32. Voronov S.V., Mukhometzianov R.N., Voronov I.V., Shramov V.A. Trafic sign detection and recognition in real time on mobile devices. Avtomatizatsiya protsessov upravleniya [Automation of management processes]. 2018. ¹2 (52). P.105-111. (In Russian)

33. Erokhin D.Y., Ershov M.D. Modern convolutional neural networks for object detection and recognition. Tsifrovaya obrabotka signalov [Digital signal processing]. 2018. ¹3. P.64-69. (In Russian)

34. Kechagias-Stamatis O., Aouf N. Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey. ArXiv. 2021. https://arxiv.org/abs/2007.02106

35. Chollet F. Glubokoe obuchenie na Python [Deap Learning with Python]. Saint-Petersburg, Piter Publ. 2018. 400 p. (In Russian)

36. Nikolenko S., Kadurin A., Arkhangel’skaya E. Glubokoe obuchenie [Deep Learning]. Saint-Petersburg, Piter Publ. 2018. 480 p. (In Russian)

For citation:

Kupryashkin I.F. Military objects detection using a convolutional neural network on radar images formed in jamming conditions. Zhurnal radioelectroniki [Journal of radio electronics]. 2022. ¹6. https://doi.org/10.30898/1684-1719.2022.6.8