Journal of Radio Electronics. eISSN 1684-1719. 2024. №6

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.6.4

 

 

 

mode locking REGIMES
in a traveling wave tube with a feedback circuit

 

M.N. Vilkov, A.A. Ivanov, R.M. Rozental

 

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics
of the Russian Academy of Sciences,
603950, Russia, Nizhny Novgorod, Ul'yanov str., 46

 

The paper was received April 3, 2024.

 

Abstract. The generation of sequences of short correlated pulses in a traveling wave tube (TWT) with a feedback circuit in mode locking regime are considered. It is shown that in a system with parameters corresponding to an experimentally implemented W-band TWT with a linear feedback circuit, it is possible to generate pulses whose peak intensity is several times the average power level. In turn, a significant increase in the peak pulse intensity can be achieved by adding a saturable absorber to the feedback circuit.

Key words:  traveling wave tube, mode locking, short pulse generation.

Financing: The work is supported by the state task FFUF-2024-0027.

Corresponding author: Rozental Roman Markovich, rrz@ipfran.ru

References

1. Peebles W.A., Rhodes T.L., Hillesheim J.C., Zeng L., Wannberg C. A novel, multichannel, comb-frequency Doppler backscatter system // Review of Scientific Instruments. –  2010. – Vol. 81. – No.10. – Art.no. 10D902. – https://doi.org/10.1063/1.3464266.

2. Tokuzawa T., Tsuchiya H., Tsujimura T., Emoto M., Nakanishi H., Inagaki S., Ida K., Yamada H., Ejiri A., Watanabe K.Y., Oguri K. Microwave frequency comb Doppler reflectometer applying fast digital data acquisition system in LHD // Review of Scientific Instruments. – 2018. – Vol. 89. – No. 10. – Art.no. 10H118. – https://doi.org/10.1063/1.5035118.

3. Zhang B., Inagaki S., Kawachi Y. Development of a Frequency Comb Sweep Microwave Reflectometer in the Linear Device PANTA // Plasma and Fusion Research. – 2019. – Vol. 14 –  Art.no. 1201131. – https://doi.org/10.1585/pfr.14.1201131.

4. Happel T., Kasparek W., Hennequin P., Höfler K., Honoré C. Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak // Plasma Science and Technology. – 2020. – Vol. 22. – Art.no. 064002. – https://doi.org/10.1088/2058-6272/ab618c.

5.  Razavian S., Han J., Jamali B., Pribyl P., Hosseini M., Mehta Y., Forghani M., Gekelman W., Babakhani A. Plasma Characterization Using a Silicon-Based Terahertz Frequency Comb Radiator // IEEE Sensors Letters. – 2020. – Vol. 4. – No. 9. –Art no. 3501304. – https://doi.org/10.1109/LSENS.2020.3013261.

6.  Hsieh Y.D., Iyonaga Y., Sakaguchi Y., Yokoyama S., Inaba H., Minoshima K., Hindle F., Takahashi Y., Yoshimura M., Mori Y., Araki T. Terahertz comb spectroscopy traceable to microwave frequency standard // IEEE Transactions on Terahertz Science and Technology. – 2013. – Vol. 3. – No. 3. – P. 322-330. – https://doi.org/10.1109/TTHZ.2013.2250333.

7. Skryl A.S., Pavelyev D.G., Tretyakov M.Y., Bakunov M.I. High-resolution terahertz spectroscopy with a single tunable frequency comb // Optics express. – 2014. – Vol. 22. – P. 32276-32281. – https://doi.org/10.1364/oe.22.032276

8. Ajoy A., Nazaryan R., Liu K., Lv X., Safvati B., Wang G., Druga E., Reimer J.A., Suter D., Ramanathan C., Meriles C.A. Enhanced dynamic nuclear polarization via swept microwave frequency combs // Proceedings of the National Academy of Sciences. – 2018. – Vol. 115. – P. 10576-10581. – https://doi.org/10.1073/pnas.1807125115

9. Wang C., Perkins B., Wang Z., Han R. Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS // IEEE Transactions on Biomedical Circuits and Systems. – 2018. – Vol.12. – P. 709-721. – https://doi.org/10.1109/TBCAS.2018.2812818

10. Hübers H.W., Richter H., Wienold M. High-resolution terahertz spectroscopy with quantum-cascade lasers // Journal of Applied Physics. – 2019. – Vol. 125. – Art.no. 151401. – https://doi.org/10.1063/1.5084105

11. Golubiatnikov G.Y., Koshelev M.A., Tsvetkov A.I., Fokin A.P., Glyavin M.Y., Tretyakov M.Y. Sub-terahertz high-sensitivity high-resolution molecular spectroscopy with a gyrotron // IEEE Transactions on Terahertz Science and Technology. – 2020. – Vol. 10. – P. 502-512. – https://doi.org/10.1109/TTHZ.2020.2984459

12. Haus H.A. Mode-locking of lasers // IEEE Journal of Selected Topics in Quantum Electronics. – 2000. – Vol .6. – No. 6, – P. 1173-1185. – https://doi.org/10.1109/2944.902165

13. Kryukov P.G. Ultrashort-pulse lasers // Quantum Electronics. – 2001. – Vol. 31. –  No. 2. – P. 95-119. – https://doi.org/10.1070/QE2001v031n02ABEH001906

14. Cutler C. C. The Regenerative Pulse Generator // Proceedings of the IRE. – 1955. – Vol. 43. – No. 2. – P. 140-148.– https://doi.org/10.1109/JRPROC.1955.278070.

15. Mankin I.A., Shkolnikov V.G. Pulse self-oscillatory processes in a TWT generator with external feedback // Radiotekhnika i Elektronika. – 1985. – V. 30. – No. 1. – P. 111-115. (in Russian)

16. Ginzburg N.S., Denisov G.G., Vilkov M.N., Zotova I.V., Sergeev A.S. Generation of a periodic sequence of powerful ultrashort pulses in a traveling wave tube with bleachable absorber in the feedback loop // Tech. Phys. Lett. – 2015. – Vol. 41. – P. 836–839. – https://doi.org/10.1134/S1063785015090047.

17. Ginzburg N.S., Samsonov S.V., Denisov G.G., Vilkov M.N., Zotova I.V., Bogdashov A.A., Gachev I.G., Sergeev A.S., Rozental R.M. Ka-Band 100-kW Subnanosecond Pulse Generator Mode-Locked by a Nonlinear Cyclotron Resonance Absorber // Phys. Rev. Appl. – 2021. – Vol. 16. – Art.no. 054045. – https://doi.org/10.1103/PhysRevApplied.16.054045

18. Morozov V.N., Nikitin V.V., Sheronov A.A. Self-synchronization of Modes in a GaAs Semiconductor Injection Laser // JETP Letters.– 1968. – Vol. 7. – No. 9. – P. 256-258.

19. Magdich L.N. Nonstationary Phenomena in a Laser with Interacting Modes // Soviet Physics JETP. – 1968. – Vol. 26. – No. 3. – P. 492-494.

20. Bondarenko A.N., Krivoshchekov G.V., Semibalamut V.M., Smirnov V. A., Stupak  M. F. Mode self-locking in a ruby laser operating with free lasing // Radiophys Quantum Electron. – 1971. – Vol. 14. – P. 1269–1270. – https://doi.org/10.1007/BF01035079.

21. Ginzburg N.S., Petelin M.I. Mode competition and cooperation in free-electron lasers// Izvestiya VUZ. Applied Nonlinear Dynamics. – 1994. – Vol. 2. – No. 6. P. 3-26. (in Russian)

22. Ryskin N.M. Study of the Nonlinear Dynamics of a Traveling-Wave-Tube Oscillator with Delayed Feedback // Radiophysics and Quantum Electronics. – 2004. – Vol. 47. – P. 116–128. – https://doi.org/10.1023/B:RAQE.0000035693.16782.94.

23. Rozental R.M., Samsonov S.V., Bogdashov A.A., Gachev I.G., Ivanov A.A.,  Kamenskiy M.V. Self-Mode-Locking Regime in a K-Band Gyro-TWT With External Reflections // IEEE Electron Device Letters. – Vol. 44. – No. 1. – P. 140-143.– https://doi.org/10.1109/LED.2022.3225145.

24. Zhidkov A.P. Research of ultra­wide range s­band chaos generator based on TWT // Izvestiya VUZ. Applied Nonlinear Dynamics. – 2014. – Vol. 22. – No. 6. – P. 42-48. – https://doi.org/10.18500/0869-6632-2014-22-6-42-48  (in Russian)

25. Svelto O. Principles of Lasers, 5th ed. – Berlin, Germany: Springer, 2010.

26. Rozental R.M., Ivanov A.A., Sidorov D.A.,  Vilkov M.N. Self-Mode-Locking Operation Regimes in a TWT With Low-Level Delayed Feedback // IEEE Transactions on Electron Devices. – Vol. 70. – No. 11. – P. 5940-5945. – https://doi.org/10.1109/TED.2023.3317368.

27. Mankin I.A., Shkolnikov V.G. Ultra-wideband signals in microwave systems. Part III. Non-stationary electronics. Generation of complex signals in a TWT (according to domestic and foreign press data for 1949-1984) // Reviews on electronic technology. Series 1. Microwave electronics. – No. 6 (1083). – Moscow: CNII Electronics, 1985. (in Russian)

28. Kompfner R. On the operation of the travelling wave tube at low level // J. Brit. IRE. – 1950. – V. 10. – No. 8-9. – P. 283–289. – https://doi.org/10.1049/jbire.1950.0028

29. Shevchik V.N., Trubetskov D.I. Analytical calculation methods in microwave electronics. – Moscow: Soviet Radio, 1970. - 584 p.

30. Yurovskiy L.A., Zotova I.V., Abubakirov E.B., Rozental R.M., Sergeev A,S., Ginzburg N.S. Generation of ultra-powerful microwave pulses in stretcher-amplifier-compressor systems // Zhurnal Radioelektroniki - Journal of Radio Electronics. – 2020. – No.12. – https://doi.org/10.30898/1684-1719.2020.12.21

31. Yurovskiy L.A., Zotova I.V., Ginzburg N.S., Vilkov M.N., Rozental R.M., Samsonov S.V., Abubakirov E.B. Production of Multi-Gigawatt Sub-Nanosecond Microwave Pulses by the Method of Chirped-Pulse-Amplification // IEEE Electron Dev. Lett. – 2021. – Vol. 42. – No.1. – P. 98-101. – https://doi.org/10.1109/LED.2021.3053131.

For citation:

Vilkov M.N., Ivanov A.A., Rozental R.M. Mode locking regimes in a traveling wave tube with a feedback circuit. // Journal of Radio Electronics. – 2024. – №. 6 https://doi.org/10.30898/1684-1719.2024.6.4 (In Russian)