ВЛИЯНИЕ НИСХОДЯЩЕГО ИЗЛУЧЕНИЯ АТМОСФЕРЫ НА КАЧЕСТВО РАДИОТЕПЛОВЫХ ИЗОБРАЖЕНИЙ ОБЪЕКТОВ И ФОНА В ДИАПАЗОНЕ МИЛЛИМЕТРОВЫХ ВОЛН

Голунов В.А., Зражевский А.Ю.

Фрязинский филиал Института радиотехники и электроники им. В.А.Котельникова РАН E-mail: <u>golsnow@rambler.ru</u>

Рассмотрены факторы, определяющие качество тепловых изображений. Приводятся результаты экспериментального исследования влияния нисходящего излучения чистой, облачной атмосферы и дождя на отношение сигнал/шум при формировании радиотепловых изображений объектов и фона на длинах волн 3 и 8 мм.

Интерес к разработкам и развитию систем пассивной локации и радиовидения в диапазоне миллиметровых (MM) волн обусловлен возможностью осуществлять наблюдение за объектами и фоном в условиях отсутствия полной оптической видимости, т.е. в туманах дымах и пыли. Достигнутый к настоящему времени уровень развития новых технологий в диапазоне MM волн позволяет изготавливать приемные двумерные матричные системы, работающие в реальном времени, и на их основе создавать системы пассивного радиовидения, подобные системам тепловидения диапазона ИК волн. Современные системы радиовидения уже могут применяться в самых разнообразных направлениях таких, как обеспечение безопасной навигации морских и воздушных судов в условиях плохой видимости, автономная («слепая») посадка самолетов, обнаружение пластикового оружия, взрывных устройств и контрабанды, скрытых под одеждой человека.

Основой тепловидения является взаимная контрастность яркости излучения структурных элементов объектов и фона. Яркость структурных элементов зависит от таких факторов, как их термодинамическая температура, комплексная диэлектрическая проницаемость, геометрические особенности поверхности, а также яркость подсвечивающего излучения, угол зондирования и вид поляризации принимаемого излучения. Цель работы – исследование влияния подсвечивающего излучения атмосферы на качество радиотепловых изображений объектов и фона в «окнах прозрачности» диапазона ММ волн.

1.Качество тепловых изображений.

Качество изображения объекта определяется по критерию его распознавания. Распознавание объекта возможно, когда его тепловое изображение содержит ряд яркостных структурных особенностей, отличающих его от всех других. К ним можно отнести, например, характерную совокупность контурных и текстурных особенностей деталей и объекта в целом. Так как тепловое изображение объекта воспроизводит его контуры и детали с некоторыми искажениями, то возникает необходимость количественной оценки качества изображения.

На примере многих исследований показано, что наиболее важным параметром, характеризующим возможный уровень видения объекта с помощью системы, является пространственное разрешение, которое может быть определено как разрешение

308

различных штриховых мир, эквивалентных объекту [1]. Такой подход справедлив независимо от природы имеющегося сочетания различных дефектов изображения и диапазона длин волн. Объект характеризуется критическим размером, определяемым размерами деталей объекта, существенных для его видения. В типичном случае это минимальный габаритный размер проекции изображения объекта на плоскость, перпендикулярную линии наблюдения.

Известно, что повышение разрешающей способности прибора наблюдения улучшает характеристики различения и опознавания объектов. В [2] показано, что для уверенного различения объекта число разрешаемых штрихов на критический размер объекта должно составлять 4 ± 0.8 . Авторы [3] в натурных условиях показали, что число элементов разрешения, требуемое для различения с уверенностью 90%, в зависимости от сложности объекта меняется от 3 до 20.

В [4] исследована зависимость опознавания объекта от числа строк сканирования, укладывающихся в размер изображения объекта, и от отношения сигнала к шуму. Были использованы 20 макетов бронетанковой техники и получены их изображения с помощью оптико-электронной системы. Число строк сканирования, соответствующих высоте объекта, составляло 16, 32 и 48. К изображениям добавлялись гауссовы шумы, чтобы получить значения отношения сигнала к шуму 3, 5, 10, 20 и 45. В результате исследований были построены графики зависимости правильных опознаваний в функции отношения сигнал/шум для постоянных условий опознавания. Основные выводы, сделанные в работе [4], следующие:

- 1. Вероятность правильного опознавания для наземных объектов военной техники является возрастающей функцией отношения сигнал/шум вплоть до значения, равного 15.
- Вероятность правильного опознавания для изображений без шумов только на 5% выше, чем при отношении сигнал/шум 30.
- 3. С увеличением отношения сигнал/шум от 20 до бесконечности вероятность правильного опознавания возрастает максимум на 10%.
- 4. При отношениях сигнал/шум 2, 3 и 4 различия в качестве изображения пренебрежимо малы.

Обобщение результатов исследования влияния разрешающей способности и отношения сигнал/шум на вероятность правильного опознавания выполнено в [5] и показано в виде графиков на рис. 1.

Таким образом, если под качеством изображения понимать совокупность его свойств, позволяющих обнаруживать, классифицировать и идентифицировать объекты, то оно может оцениваться количественно посредством вероятности их правильного опознавания, которая, в свою очередь, определяется количеством разрешаемых строк на критический размер объектов и отношением сигнал/шум. Количество разрешаемых строк на критический размер объектов определяется, очевидно, соотношением реализуемого углового разрешения системы радиовидения и угловым размером объектов. Отношение сигнал/шум зависит как от чувствительности приемной системы, так и от условий наблюдения, влияющих на абсолютные структурные контрасты. Ниже рассматривается

Рис.1. Вероятность распознавания [5] в зависимости от разрешения (количество линий на минимальном контуре объекта) (сплошная линия при отношении сигнал/шум 2,8) и отношения сигнал/шум (пунктирная кривая при количестве линий 4).

зависимость отношения сигнал/шум от подсвечивающего излучения атмосферы в диапазоне ММ волн.

2. Устойчивость контрастов относительно вариаций интенсивности нисходящего излучения атмосферы.

Математическое описание устойчивости контрастов земных покровов относительно вариаций интенсивности нисходящего излучения атмосферы развито в работе [6]. Радиояркостная температура T равномерно нагретого и однородного покрова при угле наблюдения $\Omega = \Omega(\theta, \phi)$ представлена в виде [6,7]:

$$T(\Omega) = \mathfrak{w}(\Omega) T_n + R(\Omega) T_a^*(\Omega)$$

где

$$T_a^*(\Omega) = \int_{2\pi} g^*(\Omega, \Omega_0) T_a(\Omega_0) \cos \theta_0 d\Omega_0,$$

- температура подсвечивающего излучения атмосферы,

$$g^{*}(\Omega, \Omega_{0}) = \frac{g(\Omega, \Omega_{0}) \cos \theta_{0} \sec \theta}{R(\Omega)}$$

- форма индикатрисы рассеяния $g(\Omega, \Omega_0)$ покрова,

$$R(\Omega) = (\cos \theta)^{-1} \int_{2\pi} g(\Omega, \Omega_0) \cos \theta_0 d\Omega_0$$

- интегральный коэффициент отражения (альбедо), связанный с коэффициентом излучения æ покрова законом сохранения энергии:

 $\mathfrak{a}(\Omega) = 1 - R(\Omega)$

 $T_a(\Omega_0)$ - угловой радиояркостный спектр нисходящего излучения атмосферы.

В качестве основной характеристики изменчивости контрастов в условиях вариаций радиояркости атмосферы введен коэффициент устойчивости q_{κ} контраста ΔT_k между

произвольно выбранным к-ым земным покровом и черным телом (ЧТ) в предположении, что коэффициент излучения покрова во времени не изменяется, а термодинамические температуры ЧТ и покрова равны термодинамической температуре T_o приземного слоя атмосферы:

$$q_{k} = \frac{\Delta T_{k}^{\min}}{\Delta T_{k}^{\max}} = \frac{\left(T_{0} - T_{ak}^{*}\right)^{\min}}{\left(T_{0} - T_{ak}^{*}\right)^{\max}}$$
(1)

где $(T_0 - T_{ak}^*)^{\min}$ и $(T_0 - T_{ak}^*)^{\max}$ - соответственно статистически минимальное и максимальное значения разности $(T_0 - T_{ak}^*)$, определяемые в соответствии с заданной вероятностью того, что текущие значения разности $(T_0 - T_{ak}^*)$ находятся внутри интервала $[(T_0 - T_{ak}^*)^{\min}, (T_0 - T_{ak}^*)^{\max}]$. В [6,7] показано, что в соответствии с заданной вероятностью коэффициент устойчивости (1) характеризует максимальное изменение не только контраста *к*-ого покрова относительно ЧТ, но также всех контрастов между покровами с однотипными формами индикатрис рассеяния или равными температурами подсвечивающего излучения атмосферы. Так, например, все зеркально отражающие покровы будут иметь одно и то же значение коэффициента устойчивости q_n , который в случае безоблачной атмосферы может быть представлен в виде:

$$q_n(\vartheta) = (T_0^{\max} / T_0^{\min}) \exp[-(\Gamma^{\max} - \Gamma^{\min}) \sec \vartheta],$$

где *Г* – полное вертикальное поглощение атмосферы. Отсюда, в частности, следует, что при увеличении угла приема устойчивость контрастов плоских поверхностей уменьшается.

В условиях чистой атмосферы коэффициент устойчивости поверхностей с различными рассеивающими свойствами может быть определен через коэффициент устойчивости плоских поверхностей, угла наблюдения и угла ориентации нормали к наблюдаемой поверхности. Кроме того, показано, что коэффициент устойчивости покровов характеризует также максимально возможное изменение отношения сигнал/шум при заданной вероятности области существования разности ($T_0 - T_a^*$), т.е. области [$(T_0 - T_a^*)^{\min}, (T_0 - T_a^*)^{\max}$].

Одним из достоинств введенной величины – коэффициента устойчивости контрастов, - является возможность его непосредственного измерения в различных метеоусловиях. Результаты измерений, выполненных на длинах волн: 2,15 мм, 3,2 и 8 мм [6,7], составили основу для нижеследующего рассмотрения.

3. Влияние метеоусловий на качество радиотепловых изображений.

Наиболее точный прогноз качества радиотепловых изображений возможен только в случае в среднем плоских земных покровов. В отличие от них объекты могут иметь самые разнообразные формы своих поверхностей, а, следовательно, и индикатрисы рассеяния. В связи с этим представляется целесообразным осуществлять оценку отношения сигнал/шум и соответствующего качества радиоизображений в изменяющихся

метеоусловиях через коэффициент устойчивости q_n плоских поверхностей при угле наблюдения 0^0 , т.е. осуществлять оценку «сверху».

Пусть ξ_0 - отношение сигнал/шум, реализуемое при неизлучающей атмосфере. Тогда при подсвечивающем излучении атмосферы отношение сигнал/шум в соответствии с определением коэффициента устойчивости (1) будет определяться по формуле: $\xi = q_n \xi_0$. На рис.2 показаны распределения типичных значений коэффициента устойчивости плоских поверхностей (т.е. нормированного отношения сигнал/шум $\frac{\xi}{\xi_0} = q_n$) в зависимости от состояния атмосферы при длинах волн 3 мм (диаграмма 1) и 8 мм (2), рассчитанные на основе результатов выполненного экспериментального исследования [6,7].

Рис. 2. Распределение типичных значений коэффициента устойчивости плоских поверхностей в зависимости от состояния атмосферы при длинах волн 3 (1) и 8 (2) мм. Угол наблюдения 0⁰.

Из данных, представленных на рис.2 следует, что качество радиоизображений на длине волны 3 мм существенно снижается только в условиях мощной многоярусной облачности и, особенно, в дождях, а на длине волны 8 мм – только в умеренных и сильных дождях. Этот вывод подтверждается экспериментальными радиотепловыми изображениями на длине волны 3 мм [8].

ЛИТЕРАТУРА.

1. Ллойд Дж. Системы тепловидения. М., Мир, 1978. 414 с.

- Johnson J. Analysis of image forming systems. Proceed. of the Image Intensifier Symp., U.S. Army Engineering Reseach Development Laboratories. Fort Belvoir, Virginia. October, 1958.
- 3. Greening C.P., Wyman M.J. Experimental evaluation of a visual detection model. Human Factors, 1970, v. 12, p. 435-445.
- 4. Hollanda P.A., Harabedian A. The informative value of line-scan images as a function of image contrast and the number if scans per scene object (ground-level, non-simulated imagery). Perkin-Elmer Report № 10032, Perkin-Elmer Optical Technology Div., Danbury, Connecticut, 1970.
- 5. Infrared and Millimeter Waves. v.4 Millimeter Systems. Edited by J. Button, J.S.Wilts. 1981, Academic Press, New York.
- 6. Голунов В.А. Исследование вариаций радиояркостных характеристик окружающей среды в ММ диапазоне волн. В кн.: Электромагнитные волны в атмосфере и космическом пространстве. М., Наука, 1986, с.192 200.
- 7. Голунов В.А., Коротков В.А., Сухонин Е.В. Эффекты рассеяния при излучении миллиметровых волн атмосферой и снежным покровом. Итоги науки и техники, сер. Радиотехника, т.41, М., ВИНИТИ, 1990, с.68-136.
- 8. Зражевский А.Ю, Голунов В.А., Гапонов С.С., Новичихин Е.П., Терентьев Е.Б., Чернушич А.П. Особенности и возможности поляризационного стереорадиовидения в ММ диапазоне волн. Радиотехника, 2006, № 5, с. 19 29.