Дифракция на клиновидном препятствии в присутствии отражающего слоя

П.Н. Дагуров

Отдел физических проблем Бурятского научного центра E-mail:dpn@pres.bscnet.ru

Предложена модель распространения радиоволн на трассе с клиновидным препятствием и отражающим слоем с использованием методов геометрической оптики и геометрической теории дифракции. Приведены расчетные результаты.

Введение

На закрытых приземных трассах основными механизмами распространения УКВ являются дифракция вокруг земной поверхности и переизлучение волн неоднородностями диэлектрической проницаемости тропосферы. Как правило, влияние земной поверхности и тропосферных неоднородностей, при расчете загоризонтного распространения учитывается раздельно. Между тем, очевидно, что наиболее адекватным реальной ситуации должен являться совместный учет влияния обоих механизмов распространения. Это особенно относится к промежуточной зоне теневой области, где дифракционная и тропосферная компоненты соизмеримы по амплитуде и их интерференция может приводить как к аномально высоким уровням поля, вызывающим ухудшение условий электромагнитной совместимости радиосредств, так и к глубоким замираниям сигнала. В данной работе рассматривается задача о распространении радиоволн на трассе с клиновидным препятствием, когда над препятствием находится отражающий тропосферный слой. Элементарные оценки показывают, что на трассах в присутствии тропосферного слоя, обусловленного скачком закрытых диэлектрической проницаемости, отраженное поле может быть соизмеримо с дифракционным. Приведенные ранее расчеты относятся либо к случаю, когда рассматривается дифракция вокруг гладкой земной поверхности, либо дифракционное поле на трассах с резко выраженными препятствиями сопоставляется со средним уровнем поля дальнего тропосферного распространения, полученным из обобщения экспериментальных данных [1,2]. Поэтому возникает необходимость учета совместного действия обоих механизмов распространения на результирующий сигнал в месте приема.

Теория

Пусть между источником A сферической волны и точкой наблюдения P находится клиновидное непрозрачное препятствие, над которым расположен отражающий тропосферный слой (рис. 1). Будем полагать, что удаления источника, края препятствия и приемника от границы раздела много больше длины волны. Тогда для решения задачи можно воспользоваться такими высокочастотными асимптотическими методами, как геометрическая оптика (ГО) и геометрическая теория дифракции (ГТД) [3].

На рис. 1 показаны геометрооптические и дифракционные лучи, возникающие в данной задаче. Результирующее поле в точке, согласно ГО и ГТД, имеет вид:

$$U(P) = U_1 \chi (\pi - \alpha) + U_{23} \chi [(\pi - \alpha_1)(\pi - \alpha_2)] + U_{47} + U_{567} + U_{489} + U_{5689}, \qquad (1)$$

где $\chi(t)$ – единичная функция Хевисайда, индексы показывают последовательный путь лучей.

Поле U_1 соответствует прямому лучу AP. Согласно ГО, он отсутствует, когда точка P находится в теневой области препятствия, что учтено введением функции Хевисайда χ . Луч 23 – это отраженный луч, который отсутствует, когда точка P находится в тени относительно зеркального изображения источника A, либо изображение приемника P находится в тени относительно источника A. Это обстоятельство учтено умножением поля U_2 на функцию Хевисайда, аргументом которой является комбинация углов α_1 и α_2 .

Обозначив через r_i длину j – го луча, получим для прямого поля:

$$U_1 = \frac{e^{ikr_1}}{r_1},\tag{2}$$

где k – волновое число в среде, расположенной ниже слоя.

Рис. 1. Геометрия задачи.

Поскольку отражающую поверхность считаем плоской, то отраженная волна, согласно приближению ГО, имеет вид:

$$U_{23} = R \frac{e^{ik(r_2 + r_3)}}{r_2 + r_3},$$
(3)

где *R* – коэффициент отражения. Так как поле вблизи отражающей поверхности является локально плоским, полагаем, что этот коэффициент равен френелевскому коэффициенту отражения для плоской волны.

Поле U_{47} – это прямое дифрагированное на крае препятствия поле. Для нахождения его воспользуемся результатами равномерной ГТД, которая позволяет описывать поля в переходных областях вблизи границ «свет–тень» [4]. Согласно ГТД, дифракционное поле в месте приема имеет следующий вид:

$$U_d = U_0 DA(S) e^{ikS}, (4)$$

где U_0 – падающее поле в той точке, из которой выходит дифракционный луч, S – эйконал дифракционного луча, A(S) описывает изменение амплитуды поля вдоль дифракционного луча. Для плоской и цилиндрической волны:

$$A(S) = \frac{1}{\sqrt{S}},$$

для сферической волны:

$$A(S) = \sqrt{\frac{S'}{\left[S(S'+S)\right]}}$$

где S' – расстояние от источника до дифрагирующего края. В формуле (4) множитель D является коэффициентом дифракции. Равномерный коэффициент дифракции на идеально проводящей полуплоскости получен в работе [4]. Для случая, когда угол дифракции мал или угол α близок к π , его можно записать в виде (пренебрегая слагаемым, связанным с отраженной от препятствия волной):

$$D = -\sqrt{\frac{S'S}{(S'+S)}} \exp\left(-i\frac{\pi}{4} - i2kL\cos^2\frac{\alpha}{2}\right) \times F\left(\sqrt{2kL}\left|\cos^2\frac{\alpha}{2}\right|\right) \operatorname{sgn}(\pi - \alpha),$$
(5)

где $L = \frac{S'S}{[(S'+S)\sin^2 \beta_0]}$, β_0 – угол между плоскостью препятствия и падающим лучом,

 $F(x) = \int_{x}^{\infty} e^{it^{2}} dt$ – интеграл Френеля.

Учитывая, что в данном случае $S' = r_4$, $S = r_7$, $\beta_0 \approx \pi/2$, из формул (4) и (5) получим:

$$U_{47} = \frac{\exp[ik(r_4 + r_7)]}{\sqrt{\pi}(r_4 + r_7)} \exp\left(-i\frac{\pi}{4} - i\frac{2kr_4r_7}{r_4 + r_7}\cos^2\frac{\alpha}{2}\right) \times F\left(\sqrt{\frac{2kr_4r_7}{r_4 + r_7}}\left|\cos^2\frac{\alpha}{2}\right|\right) \operatorname{sgn}(\alpha - \pi).$$
(6)

Отметим, что в данном малоугловом приближении поле, полученное с использованием ГТД, практически совпадает с полем, рассчитанным на основе теории дифракции Кирхгофа – Френеля.

Поле U_{567} , испытывающее вначале отражение от слоя, а затем дифракцию на крае, можно с учетом формул (3) – (5) представить в виде:

$$U_{567} = R_1 \frac{\exp[ik(r_5 + r_6 + r_7)]}{\sqrt{\pi}(r_5 + r_6 + r_7)} \exp\left(-i\frac{\pi}{4} - i\frac{2k(r_5 + r_6)r_7}{r_5 + r_6 + r_7}\cos^2\frac{\alpha_1}{2}\right) \times F\left(\sqrt{\frac{2k(r_5 + r_6)r_7}{r_5 + r_6 + r_7}}\cos\frac{\alpha_1}{2}\right) \exp(\alpha_1 - \pi),$$
(7)

где *R*₁ – коэффициент отражения луча 5 от границы слоя.

Аналогично получим:

$$U_{489} = R_2 \frac{\exp(r_4 + r_8 + r_9)}{\sqrt{\pi} (r_4 + r_8 + r_9)} \exp\left(-i\frac{\pi}{4} - i\frac{2kr_4(r_8 + r_9)}{r_4 + r_8 + r_9}\cos^2\frac{\alpha_2}{2}\right) \times F\left(\sqrt{\frac{2kr_4(r_8 + r_9)}{r_4 + r_8 + r_9}} \left|\cos\frac{\alpha_2}{2}\right|\right) \operatorname{sgn}(\alpha_2 - \pi);$$
(8)

$$U_{5689} = -R_1 R_2 \frac{\exp(r_5 + r_6 + r_8 + r_9)}{\sqrt{\pi} (r_5 + r_6 + r_8 + r_9)} \exp\left(-i\frac{\pi}{4} - i\frac{2k(r_5 + r_6)(r_8 + r_9)}{r_5 + r_6 + r_8 + r_9}\cos^2\frac{\alpha_3}{2}\right) \times F\left(\sqrt{\frac{2k(r_5 + r_6)(r_8 + r_9)}{r_5 + r_6 + r_8 + r_9}}}\right) \cos\frac{\alpha_3}{2}\right),$$
(9)

так как всегда выполняется неравенство $\alpha_3 < \pi$.

Таким образом, получены явные выражения для полей, входящих в формулу (1). Подставляя их в данную формулу, найдем результирующее поле.

Отметим, что формула (1) записана без учета волн вторичных отражений и дифракций, поскольку предполагается, что расстояние между краем препятствия и слоем велико по сравнению с длиной волны.

Результаты расчета

Для численных оценок был проведены расчеты множителя ослабления поля $V=U(P)/U_1$ для простого случая, когда слой представляет собой полупространство, т.е. отражающей

поверхностью является граница раздела двух полупространств с диэлектрическими проницаемостями $\varepsilon = 1$ и $\varepsilon = 1 + \Delta \varepsilon$ с $\Delta \varepsilon \ll 1$. В этом случае коэффициент отражения от слоя независимо от поляризации волны описывается формулой

$$R = \frac{\sin \alpha - \sqrt{\Delta \varepsilon + \sin^2 \alpha}}{\sin \alpha + \sqrt{\Delta \varepsilon + \sin^2 \alpha}}$$

где *а* – угол скольжения волны.

Для примера приведены результаты расчета для трассы длиной 50 км с клиновидным препятствием, расположенным посередине трассы. Длина волны равна 10 см. На рис. 2 – 4 показаны результаты при различных значениях высоты препятствия Н над линией АР в зависимости от расстояния между границей раздела и краем препятствия H_{C} .

Рис. 2. Зависимость множителя ослабления от высоты слоя над краем препятствия при $\Delta \varepsilon = 10^{-6}$. a) H = 50 м, б) H = 200 м.

На рис. 2 представлены зависимости, полученные для $\Delta \varepsilon = 10^{-6}$ и H = 50 м и 200 м. Из них следует, что при таком скачке Д влияние отражений от границы раздела на результирующее поле невелико. Вследствие малости величины Де изменение ее знака не влияет на результаты. Иная картина наблюдается при более интенсивном скачке диэлектрической проницаемости, равном 10^{-5} и H = 50 м (рис. 3). Здесь во-первых, дифракционное поле и поле, отраженное от слоя, становятся при определенных высотах слоя соизмеримы друг с другом, что вызывает значительные интерференционные изменения уровня результирующего поля. Во-вторых, в отличие от положительного скачка диэлектрической проницаемости (рис. 4), при $\Delta \varepsilon = -10^{-5}$ вследствие явления полного внутреннего отражения результирующее поле может превышать поле свободного пространства (рис. 4). При H = 200 м полное внутреннее отражение

Рис. 3. Зависимость множителя ослабления от высоты слоя над краем препятствия при H = 50 м. а) $\Delta \varepsilon = 10^{-5}$, б) $\Delta \varepsilon = -10^{-5}$. 723

Рис. 4. Зависимость множителя ослабления от высоты слоя над краем препятствия при H = 200, $\Delta \varepsilon = \pm 10^{-5}$.

отсутствует и зависимости, полученные при $\Delta \varepsilon = 10^{-5}$ и $\Delta \varepsilon = -10^{-5}$ не отличаются друг от друга (рис. 4).

ЛИТЕРАТУРА

- 1. Цыдыпов Ч.Ц. Распространение ультракоротких радиоволн. Новосибирск, Наука, 1977.
- **2.** Дальнее тропосферное распространение ультракоротких радиоволн. –М.: Сов. радио, 1965.
- 3. Боровиков В.А., Кинбер В.Е. Геометрическая теория дифракции. М.: Связь, 1978.
- 4. Kouyoumjian R.G., Pathak P.G. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 1974, vol. 62, № 11, p. 1448-1461.