АЛГОРИТМ КОРРЕКЦИИ УГЛОВОГО СПЕКТРА ЭХО-СИГНАЛА В МНОГОЛУЧЕВОМ ЭХОЛОТЕ С ЛЧМ ЗОНДИРУЮЩИМ СИГНАЛОМ

Кривцов А.П.. ИРЭ им. В.А. Котельникова РАН.

Рассмотрен алгоритм подавления сигналов проходящих по боковым лепесткам многолучевого эхолота (МЛЭ), ориентированный на использование в эхолотах с цифровой системой формирования диаграммы направленности антенной решетки (АР). Приведен пример применения алгоритма для коррекции углового спектра эхо-сигнала в многолучевом эхолоте с ЛЧМ зондирующим сигналом.

1. Введение.

Многолучевые эхолоты находят широкое применение в современных комплексах картографирования морского дна, позволяя обрабатывать сигналы и визуализировать результаты измерений в реальном масштабе времени. Несмотря на применение эффективных методов и алгоритмов обработки гидроакустической информации постоянно возрастающие требования к производительности и качеству обработки данных МЛЭ диктуют необходимость создания новых высокопроизводительных вычислительных систем и алгоритмов. В настоящей работе рассмотрен алгоритм подавления сигналов проходящих по боковым лепесткам МЛЭ, ориентированный на использование в эхолотах с цифровой системой формирования диаграммы направленности антенной решетки.

2. Алгоритм подавления боковых лепестков.

Принцип работы алгоритма подавления боковых лепестков рассмотрим в рамках лучевого приближения. Пусть $S_1(t), S_2(t), ..., S_n(t)$ эхо-сигналы, приходящие с направлений формирования лучей многолучевого эхолота, задаваемых углами прихода $\alpha_1, \alpha_2, ..., \alpha_n$. Здесь t - время прихода сигнала, n - число лучей. При формировании главного луча антенной решетки в направлении α_1 сигнал $P_1(t)$, регистрируемый с данного направления, может быть записан в виде суммы:

$$P_1(t) = S_1(t) + k_{12}S_2(t) + \dots + k_{1n}S_n(t)$$
(1)

где $k_{12},...,k_{1n}$ - коэффициенты, определяющие прохождение по боковым лепесткам эхо-сигналов с направлений, задаваемых углами $\alpha_2,...,\alpha_n$.

Выписав аналогичные соотношения для сигналов, регистрируемых с других направлений, получим систему уравнений:

$$\begin{cases} P_{1}(t) = S_{1}(t) + k_{12}S_{2}(t) + \dots + k_{1n}S_{n}(t) \\ P_{2}(t) = k_{21}S_{1}(t) + S_{2}(t) + \dots + k_{2n}S_{n}(t) \\ \dots \\ P_{n}(t) = k_{n1}S_{1}(t) + k_{n2}S_{2}(t) + \dots + S_{n}(t) \end{cases}$$
(2)

где k_{ij} - коэффициенты, определяющие уровень прохождения сигнала с направления α_j при формировании главного лепестка антенной решетки в направлении α_i ; $P_i(t)$ - сигнал, как функция времени, регистрируемый в процессе гидролокационной съемки с направления α_i .

При известных параметрах МЛЭ и условиях гидролокационного зондирования все коэффициенты k_{ij} могут быть вычислены теоретически [1]. В этом случае, решая систему линейных уравнений (2) относительно $S_i(t)$, получаем искомый набор "чистых эхо-сигналов" с направлений обзора α_i .

В реальных условиях гидролокационной съемки теоретическое вычисление коэффициентов k_{ij} затруднено из-за изменчивости характеристик водной среды. Поэтому для их расчета было предложено использовать алгоритм вычисления коэффициентов непосредственно по данным гидролокационного зондирования донной поверхности. Описание этого алгоритма рассмотрим на примере вычисления коэффициентов k_{1j} для первого уравнения системы уравнений (2). Принцип работы алгоритма базируется на отыскании минимума следующей функции:

$$F(k_{12},\ldots,k_{1n}) = \sum_{l=1}^{L} \left[P_1(t_l) - k_{12} P_2(t_l) - \ldots - k_{1n} P_n(t_l) \right]^2$$
(3)

Здесь $P_i(t_i)$ - оцифрованные эхо-сигналы, регистрируемые МЛЭ с направлений, задаваемых углами α_i в моменты времени t_i . Суммирование в (3) ведется по данным одного цикла излучения и приема сигнала. L - число отсчетов сигнала в строке данных.

Набор коэффициентов $k_{12},...,k_{1n}$, минимизирующих функцию (3), находим путем решения системы уравнений:

$$\begin{cases} \frac{\partial F}{\partial k_{12}} = 0\\ \frac{\partial F}{\partial k_{13}} = 0\\ \dots\\ \frac{\partial F}{\partial k_{1n}} = 0 \end{cases}$$
(4)

или в развернутом виде:

$$\begin{cases} \sum_{l=1}^{L} P_{1}(t_{l})P_{2}(t_{l}) - k_{12} \sum_{l=1}^{L} P_{2}(t_{l})P_{2}(t_{l}) - \dots - k_{1n} \sum_{l=1}^{L} P_{n}(t_{l})P_{2}(t_{l}) = 0 \\ \sum_{l=1}^{L} P_{1}(t_{l})P_{3}(t_{l}) - k_{12} \sum_{l=1}^{L} P_{2}(t_{l})P_{3}(t_{l}) - \dots - k_{1n} \sum_{l=1}^{L} P_{n}(t_{l})P_{3}(t_{l}) = 0 \\ \dots \\ \sum_{l=1}^{L} P_{1}(t_{l})P_{n}(t_{l}) - k_{12} \sum_{l=1}^{L} P_{2}(t_{l})P_{n}(t_{l}) - \dots - k_{1n} \sum_{l=1}^{L} P_{n}(t_{l})P_{n}(t_{l}) = 0 \end{cases}$$
(5)

Система уравнений (5) содержит (n-1) уравнение и столько же неизвестных. Решение этой системы относительно k_{1i} , определяет набор искомых коэффициентов.

Применяя описанный способ вычисления коэффициентов для других уравнений системы (2) находим полный набор коэффициентов k_{ij} необходимых для работы алгоритма подавления боковых лепестков.

Чтобы уменьшить влияние флуктуационной составляющей расчеты коэффициентов k_{ij} следует проводить по данным гидролокационной съемки донной поверхности с простым и ровным рельефом. Непосредственно используемые в алгоритме подавления боковых лепестков коэффициенты находятся путем статистического усреднения этих величин, полученных по множеству обработанных строк данных.

Таким образом, процедура обработки данных многолучевого эхолота с применением алгоритма подавления боковых лепестков проводится в следующей последовательности. Сначала обычными методами формируются выходные сигналы МЛЭ $P_i(t)$ с направлений обзора α_i . Далее сформированный веер лучей корректируется алгоритмом подавления боковых лепестков. Полученный после коррекции веер лучей используется на последующих этапах обработки для извлечения полезной информации.

3. Пример применения алгоритма подавления боковых лепестков.

Проверка работы алгоритма была выполнена на данных многолучевого эхолота, в состав которого входила 32-элементная линейная приемная антенна, устройство формирования и излучения ЛЧМ сигналов и многоканальный малошумящий цифровой приемник диапазона 30 кГц с интерфейсом ввода на базе платы L-Card L783 [2]. В процессе работы излучаемый зондирующий сигнал после отражения от морского дна принимался линейной антенной решеткой с независимой регистрацией квадратурных компонент эхо-сигналов по каждому из 32-х каналов. Цифровыми методами формировались 32 независимых луча в виде эхо-сигналов, принимаемых с заданных направлений по углу места (угол α - в плоскости, проходящей через линию

расположения элементов решетки). Обзор пространства в перпендикулярном направлении осуществлялся за счет движения судна-носителя гидролокационной системы.

Для синтеза многолучевой диаграммы направленности и формирования выходных сигналов антенной решетки применялся алгоритм, использующий быстрое преобразование Фурье. В соответствии с этим алгоритмом в каждом цикле излучения и приема проводится вычисление пространственных спектров эхо-сигналов. Отсчеты спектральных составляющих представляют собой сигналы на выходе АР принятые с направлений определяемых соотношением:

$$\sin(\alpha_i) = -\frac{(i-1)\lambda}{nd} \tag{6}$$

где α_i - угол прихода эхо-сигнала, *i* - номер спектральной составляющей, λ - длина волны зондирующего сигнала, *d* - расстояние между соседними элементами решетки $(d \approx \lambda/2)$, *n* - число элементов решетки.

Рис. 1. Пространственные спектры сигнала многолучевого эхолота для одной и той же строки данных (разные варианты обработки).

На Рис. 1 показаны спектры одного и того же эхо-сигнала полученные с использованием двух вариантов обработки. По вертикальной оси на каждой картинке отложен номер луча i ($-15 \le i \le 16$), связанный с углом прихода эхо-сигнала соотношением (6). По горизонтали – время прихода сигнала. Более яркие участки соответствуют большей мощности принятого сигнала. Таким образом, на рисунках в яркостном виде показаны выходные сигналы 32-канальной AP, синтезированные для 32-х направлений прихода эхо-сигнала.

Представленные спектры получены для сигнала отраженного от ровного дна на глубине около 700 метров. На Рис. 1а формирование лучей выполнено с прямоугольным амплитудно-фазовым распределением по раскрыву АР. В обработке данных показанных на Рис.1б также применялось прямоугольное окно, но была выполнена дополнительная коррекция спектров алгоритмом подавления боковых лепестков. Полезный сигнал, несущий информацию о рельефе и отражательных свойствах донной поверхности, проявляется на рисунках в виде параболы. Вершина параболы приходится на луч, сформированный в направлении первого прихода сигнала. Смещение вершины параболы от направления $\alpha = 0^{\circ}$, что соответствует лучу с номером i = 1, объясняется креном носителя эхолота во время гидролокационной съемки.

На Рис. 1а стрелками сверху и снизу обозначены сигналы, проходящие по боковым лепесткам антенной решетки с направления первого прихода сигнала (угол $\alpha \approx 0^{\circ}$). Как видно на Рис. 1б, коррекция данных позволила существенно уменьшить уровень этих мешающих сигналов, оставляя при этом почти без изменений сигнал, приходящий по главному лепестку.

4. Заключение.

Рассмотренный в настоящей работе алгоритм подавления сигналов, проходящих по боковым лепесткам МЛЭ, ориентирован на использование в эхолотах с цифровой системой формирования диаграммы направленности антенной решетки. На примере обработки экспериментальных данных показано, что применение алгоритма позволяет заметно снизить уровень помех проходящих по боковым лепесткам многолучевого эхолота с других направлений.

Литература.

- 1. «Проектирование фазированных антенных решеток», Под редакцией Воскресенского Д.И., «Радиотехника», Москва, 2003.
- 2. Каевицер В.И., Разманов В.М., Кривцов А.П., Смольянинов И.В., Долотов С.А. «Дистанционное зондирование морского дна акустическими сигналами с линейной частотной модуляцией». Радиотехника, 2008, № 8, с. 35-42.