5.ДИНАМИКА ПОЛЯРИМЕТРИЧЕСКИХ СВОЙСТВ ЕСТЕСТВЕННЫХ ПОКРОВОВ НА РАЗНОСЕЗОННЫХ ДАННЫХ ALOS PALSAR

Л.Н. Захарова, А.И. Захаров ФИРЭ им. В.А. Котельникова РАН

Аннотация. Работа посвящена поляриметрическому анализу серии радиолокационных данных. Исследована зависимость выделяемых на изображениях типов механизмов рассеяния от погодных условий (температуры воздуха и выпавших осадков).

Поляриметрические радиолокационные данные, увеличивая, по сравнению с данными одной поляризации, поток информации в четыре раза, обогащают исследователей также возможностью исследовать фазовые соотношения между каналами, а также восстанавливать механизмы рассеяния на основе анализа матрицы когерентности.

Существующие к настоящему времени методы классификации земных покровов в случае разносезонных поляриметрических данных могут быть дополнены соотнесением динамики поляриметрических свойств изображений одного и того же участка с вегетативным циклом для растительных покровов и погодными условиями.

В настоящей работе оценена влияние параметров внешней среды на результат поляриметрической классификации. Показано, что в условиях отрицательных температур результат классификации демонстрирует серьёзные отличия от результатов той же схемы классификации, применённой к летним съёмкам.

МЕТОД ПОЛЯРИМЕТРИЧЕСКОЙ ДЕКОПОЗИЦИИ

Метод поляриметрической декомпозиции, основанный на вычислении энтропии рассеяния и угла α [1] широко используется для классификации механизмов рассеяния. В основе метода лежит анализ матрицы когерентности *T*, элементы которой вычисляются при помощи преобразования матрицы рассеяния *S*

39

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix}$$
(1)

в вектор рассеяния k, который в базисе Паули выглядит следующим образом:

$$k = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{_{HH}} + S_{_{VV}} \\ S_{_{HH}} - S_{_{VV}} \\ 2S_{_{HV}} \end{bmatrix},$$
(2)

и последующего умножения k на k^* , где * означает эрмитово сопряжение:

$$\begin{bmatrix} T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (S_{_{HH}} + S_{_{VV}})(S_{_{HH}} + S_{_{VV}})^* & (S_{_{HH}} + S_{_{VV}})(S_{_{HH}} - S_{_{VV}})^* & 2(S_{_{HH}} + S_{_{VV}})S_{_{HV}}^* \\ (S_{_{HH}} - S_{_{VV}})(S_{_{HH}} + S_{_{VV}})^* & (S_{_{HH}} - S_{_{VV}})(S_{_{HH}} - S_{_{VV}})^* & 2(S_{_{HH}} - S_{_{VV}})S_{_{HV}}^* \\ 2S_{_{HV}}(S_{_{HH}} + S_{_{VV}})^* & 2S_{_{HV}}(S_{_{HH}} - S_{_{VV}})^* & 4S_{_{HV}}S_{_{HV}}^* \end{bmatrix}$$
(3).

После приведения самосопряжённой матрицы Т к диагональному виду

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} U \end{bmatrix}^{*T},$$

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} \cos \alpha_1 & \cos \alpha & \cos \alpha \\ & i\delta & & i\delta \\ \sin \alpha_1 \cos \beta_1 e^{-1} & \sin \alpha_2 \cos \beta_1 e^{-2} & \sin \alpha_1 \cos \beta_1 e^{-3} \\ & i\gamma & & i\gamma & & i\gamma \\ \sin \alpha_1 \sin \beta_1 e^{-1} & \sin \alpha_2 \sin \beta_1 e^{-2} & \sin \alpha_3 \sin \beta_1 e^{-3} \end{bmatrix},$$
(4)

когда на главной диагонали стоят собственные числа матрицы, можно вычислить параметры H и α при помощи следующих формул:

$$P_{i} = \frac{\lambda_{i}}{\lambda_{1} + \lambda_{2} + \lambda_{3}} \text{ (i=1,2,3),}$$
(5)

$$H = \sum_{i=1}^{3} -P_{i} \log_{3} P_{i} , \qquad \alpha = \sum_{i=1}^{3} P_{i} \alpha_{i} , \qquad (6)$$

Таким образом, энтропия H — это мера близости собственных чисел друг к другу, а α — усреднённое значение параметров α_1 , α_2 , α_3 , взятых с весами, соответствующими величинам нормированных собственных чисел.

Предлагаемая авторами [1] классификация основывается на одновременном анализе обоих параметров: угла α и энтропии Н. Область значений энтропии делится на три части: слабой (менее 0.5), умеренной (от 0.5 до 0.9) и высокой (от 0.9 до 1.0) энтропии. Каждый из этих надклассов делится, в свою очередь, на три части, в зависимости от значения угла альфа. Таким образом, получается девять классов, каждый из которых соответствует своему типу и механизму рассеяния. Следует отметить, что, чем выше энтропия, тем меньше интервал значений, которые принимает угол α . Так, никакой физический объект не даст сочетания Н и α , попадающего в прямоугольник, соответствующий малым значениям угла α при высокой энтропии (показан белым цветом на рис. 1).

Рис. 1. Цветовая схема классификации механизмов рассеяния при помощи параметров H-α.

Нарастание энтропии соответствует увеличению шероховатости поверхности и/или усложнению структуры растительности, формирующей объёмную составляющую рассеяния. Сочетание низкой и умеренной энтропии с углом α, не превосходящим 40°, соответствуют протяжённым целям с доминирующим поверхностным типом рассеяния. На изображениях-классификациях такие объекты имеют тёмно-синий и ярко-синий цвет. Величина угла α около 45° соответствует дипольному типу рассеяния, и, как правило, встречается на поросших лесом поверхностях. В

зависимости от величины энтропии разные оттенки зелёного обозначают эти три класса. Дальнейший рост угла α означает преобладание двойного (и многократного) переотражения, свойственного как естественным объектам (лес), так и созданным человеком (здания, ограды, элементы инфраструктуры), красный цвет различной интенсивности.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Для обработки были использованы данные ALOS PALSAR, снятые в поляриметрическом режиме в 2006–2008 годах по территории дельты р. Селенги, впадающей в озеро Байкал. Была рассмотрена последовательность из 12 съёмок для различных времён года. Для этого же участка имеются обработанные данные от октября 1994 года (съёмка PCA SIR-C на борту космического аппарата Shuttle Endeavor), также поляриметрические [2,3].

При первом рассмотрении классификация, приведённая на рис. 2, не слишком разнообразна: присутствует синий цвет — протяжённые цели с поверхностным механизмом рассеяния приходятся на «поверхностные» классы, затем два оттенка зелёного — области, покрытые богатой растительностью, попадают в два «дипольных» класса, и, наконец, красный: двукратно отражённый сигнал соответствует классам повышенных значений угла α.

По сравнению с классификацией интенсивностей (особенно для сочетания разных поляризационных каналов) бросается в глаза меньшая детальность классификации для безлесных поверхностей: все они попадают в один класс, тогда как первая даёт значительно большее разнообразие классов открытых поверхностей. На рис.3 показан пример кластеризации трёх интенсивностей (каналы HH, HV и VV). На лес

приходится всего два класса (светло- и средне-серый), при этом для окружающих полей и лугов набирается до шести классов. В обеих классификациях трудно различимы вода и гладкая земная поверхность.

Рис. 3. Результат классификации трёх поляризационных каналов по данным SIR-С.

СЕЗОННЫЕ ВАРИАЦИИ ПОЛЯРИМЕТРИЧЕСКИХ КЛАССОВ

Наличие 12 сцен поляриметрической съёмки для восточного побережья Байкала позволило обнаружить интересные сезонные закономерности. На рис. 4 приведены 12 карт классов для той же территории, что и на рис.2,3 (некоторые со смещением).

Рис. 4. Результат H-α-классификации по данным ALOS PALSAR, верхний ряд: 28 мая, 28 июня, 13 авг., 30 авг., 28 сент., 15 окт. 2006 г., нижний ряд: 13, 30 нояб. 2006 г., 31 мар., 2 июня, 16 нояб. 2007г., 2 апр.2008 г.

Каждая из двенадцати карт классификации в отдельности на рис. 4 напоминает рис. 2: то же небольшое количество классов: зелёного оттенка леса, тёмно-синие водные и слабошероховатые участки на суше, ярко-синие более шероховатые поверхности, красные вкрапления двойного переотражения. Расположение кадров на рис.4 таково, что они охватывает значительно большую площадь земной поверхности по сравнению с рис.2,3: добавились поросшие лесом отроги хребта Хамар-Дабан (верхняя часть кадров на рис.4), а также на большинстве кадров видна собственно дельта, весьма разветвлённая и богатая растительностью, и, кроме того, часть акватории Байкала (нижняя часть кадров на рис. 4). Таким образом, сцене SIR-C на рис. 2,3 соответствует средняя часть кадров на рис. 4 с двумя лесами по краям: более компактным Истоминским в левой части (особенно хорошо заметен на верхнем левом кадре) и сложно очерченным Дубининским в правой части изображений (лучше всего заметен на нижнем правом кадре рисунка 4).

Всюду, где на картах классификации присутствует двойное переотражение (красные вкрапления на зелёном фоне), сравнение двух лесов оказывается в пользу хвойного Дубининского: смешанный Истоминский лес всегда показывает меньшее количество участков двойного переотражения, что связано, предположительно, с разницей в объёмной структуре леса.

Два кадра из приведённых двенадцати выбиваются из общей картины (второй и пятый слева в нижнем ряду, даты 30 ноября 2006 года и 16 ноября 2007 года): в них на лесах не только не наблюдается двойного переотражения, но и полностью отсутствуют классы дипольного рассеяния, и лес классифицируется как поверхностно рассеивающая протяжённая цель: так, как на других кадрах показаны поля с повышенной шероховатостью. Погодные условия в эти дни заметно отличались от условий на всех других снимках: мороз до -10°C. Если обратить внимание на верхнюю часть снимков, где расположены лесистые отроги гор, тот же эффект, хотя и в меньшем масштабе, заметен и в другие осенне-весенние дни: 15 октября и 13 ноября 2006 года, 31 марта 2007 года, 2 апреля 2008 года со слабоотрицательными температурами, зарегистрированными на ближайшей метеостанции Улан-Удэ. Объяснение следует искать в том факте, что с увеличением высоты над уровнем моря температура поверхности убывает, и в горах холоднее, чем на равнине. Таким образом, температурные условия сказываются на механизме рассеяния.

44

Ещё один эффект, связанный с погодными условиями, связан с областями двойного переотражения (показаны красным на рис. 4). Даты, для которых оно наиболее сильно выражено: 28 июня, 30 августа, 28 сентября, 15 октября 2006 года, 2 апреля 2008 года. Все эти дни характеризуются сухой ясной погодой (кроме 28 июня, когда прошёл слабый дождь). В дни, когда был сильный ливень (30 мая и 13 августа 2006 года), эффект двойного переотражения заметно ослабевает. Вероятно, сигнал не проходил сквозь насыщенную влагой крону настолько, чтобы ещё отразиться от поверхности почвы.

ЗАКЛЮЧЕНИЕ

В работе проведено сравнение поляриметрических характеристик, вычисляемых на основе матрицы когерентности, для ряда сцен, полученных PCA космического базирования PALSAR. Прослежены сезонные вариации и зависимость от погодных условий на примере данных по Прибайкалью. Проделанная работа позволяет сделать вывод о важности учёта метеорологических параметров при проведении поляриметрического анализа радиолокационных данных и основанной на нём процедуры классификации земных покровов.

ЛИТЕРАТУРА

Land Applications of Polarimetric SAR// IEEE Transactions on Geoscience and Remote Sensing.—1997.—Vol. 35.—No. 1—P. 68–78.

Захарова Л.Н., Захаров А.И, Дарижапов Д.Д., Кирбижекова И.И. Использование данных дистанционного зондирования для классификации и анализа состояния подстилающих покровов в районе озера Байкал// Труды VI Международной научно-технической конференции ФРЭМЭ. Владимир, 21-23 апреля 2004 года — С.134–137.

Z a k h a r o v a L. Study of natural objects in Transbaikalia by means of polarimetry and polarimetric interferometry. // Proc. 5th European Conference on Synthetic Aperture Radar, Ulm, Germany, May 25-27, 2004. — C.134–137.