14. ВАРИАЦИИ ИОНОСФЕРНЫХ ПАРМЕТРОВ НА ВЫСОТАХ СЛОЯ F1 ВО ВРЕМЯ ВОЗМУЩЕНИЙ В СЕНТЯБРЕ И АПРЕЛЕ 2005 Г. НАД ИРКУТСКОМ

Колпакова О. Е., Кушнаренко Г.П., Кузнецова Г.М. Институт солнечно-земной физики СО РАН, г. Иркутск

Аннотация. Проводится анализ возмущений в апреле и сентябре 2005 г. с целью получения информации о поведении некоторых параметров ионосферы на высотах слоя F1. Используются результаты измерений, полученные на Иркутском дигизонде по 5-ти и 15- мин интервалам времени. Показано, что в сентябре все параметры очень активно откликаются на возмущения в короткие интервалы времени измерений, Показано, что электронная концентрация ведет себя более стабильно на нижних высотах слоя F1 как во время сильных, так и во время умеренных по силе возмущений.

Для выбранных периодов возмущений в апреле и сентябре 2005 г. по методике авторов также были рассчитаны полуденные изменения относительного содержания атомного и молекулярного кислорода. Такая оценка проводилась с привлечением ионосферных измерений, выполненных в ИСЗФ СО РАН в 2003-2008 гг. с помощью дигизонда.

ВВЕДЕНИЕ

Высокая степень изменчивости – одна из основных характеристик возмущенной ионосферы. Каждая геомагнитная буря развивается по-своему, благодаря разным и многим взаимодействующим факторам. Данные наблюдений показывают, что нет прямой простой связи между величиной магнитной бури и величиной ионосферного отклика. Сложным образом этот отклик зависит в данном месте от местного времени, сезона, времени начала геомагнитные возмущения в сравнении с изменениями в электронной плотности в максимуме слоя F2 – (N_mF2) в те же самые периоды возмущений. Дневное поведение слоя F1 по работе [2] в течение геомагнитной бури стремится к большей стабильности в сравнении со значительными изменениями ионизации в F2-слое.

Обычно стандартное дневное поведение параметров F-области основано на часовых наблюдениях. Наблюдения с большим разрешением показывают, что очень

часто изменения в слое F1 происходят в небольшие интервалы времени внутри часовых периодов. В нашем распоряжении имелись измерения, выполненные по 5мин. интервалам на Иркутском дигизонде в сентябре 2005 г. и 15-мин. измерения для апреля 2005 г. Используя результаты этих измерений, мы провели анализ поведения параметров во время значительных геомагнитных возмущений в сентябре и в условиях умеренного возмущения в апреле.

Геофизические условия сентября были очень разнообразные. Солнечная активность представлена индексом F_{10,7} = 75-120. Большой интерес представляет период с 7 по 15 сентября. В начале этого периода произошла мощная вспышка на Солнце, а через сутки еще 3 вспышки. В последующие дни вплоть до 17 сентября ежедневно регистрировались вспышки класса М [3]. Информация о рентгеновском излучении во время вспышек, о значениях D_{st} и A_p индексов была получена на сайтах (http://sec.noaa.gov/) и (http://swdcdb.kugi.kyotou.ac.jp/dstdir) [4,5]. Значения этих индексов показывают практически спокойные геомагнитные условия 7 и 8 сентября. В то же время обнаружены большие потоки рентгеновских излучений с 7 по 9 сентября 2005 г., максимальные величины которых были зарегистрированы 7 сентября в 17:30 -17:50 и 8 сентября в 21:05 – 21:30 UT, что соответствует ночным и ранним утренним часам в Иркутске 9 сентября. В этот же день наблюдалось несколько вспышек меньшей интенсивности, 9 и 10 сентября увеличились значения А_р-индекса. В результате 10 сентября началась магнитная буря со значением D_{st}-индекса в максимуме 11 сентября - 147 нТ. Эта буря имела длительную фазу восстановления, во время которой 15 и 16 сентября происходили более слабые магнитные возмущения.

Согласно работам [6,7,8], во время рентгеновских вспышек на Солнце интенсивность потока излучения в ультрафиолетовом диапазоне меняется не больше, чем на единицы процентов. В рентгеновском диапазоне поток возрастает в десятки и сотни раз.

Область F поглощает интервал длин волн 200-850Å, причем значительный вклад дает рентгеновское излучение. Главной причиной ионизации и нагрева слоя F1 является излучение в диапазоне (400-260)Å, а интервал (260—166)Å - важный источник ионизации в слоях F1 и E. Во время вспышки область длин волн (100-910)Å поглощается ниже 220 км. Максимальное поглощение этого участка спектра - на высоте 180 км. Имея в виду все эти сведения об интервалах длин волн, ионизующих разные области ионосферы, можно предположить, что во время солнечных вспышек в

313

сентябре повышается интенсивность диапазона длин волн λ, воздействующего на ионизацию на высотах слоя F1.

ЭЛЕКТРОННАЯ КОНЦЕНТРАЦИЯ В ВОЗМУЩЕННЫЙ ПЕРИОД СЕНТЯБРЯ 2005 Г. (ЧАСОВЫЕ ИЗМЕРЕНИЯ)

В ответ на мощные проявления солнечной активности в сентябре 2005 г. весь рассматриваемый период магнитная обстановка была очень возмущенной. В работе исследуется отклик ионосферы на возмущения на высотах слоя F1 (150, 170, 190 км) и в максимуме слоя F2 в период с 9 по 17 сентября 2005 г. Для определения главной фазы бури и периода восстановления был использован D_{st} -индекс. Его изменения в указанный период приведены на Рис. 1, а. Используются измерения параметров слоя F1, полученные на Иркутском дигизонде. Исследуется поведение параметров N_e , f0F1, h_mF1 , для сравнения рассматриваются изменения часовых значений электронной концентрации в максимуме слоя F2 – параметр N_mF2 .

Возмущение начинает развиваться 10 сентября во второй половине дня по UT, и максимальная фаза приходится на 11:00 UT 11 сентября. Возмущение продолжается 12 и 13 сентября и постепенно ослабевает, 15-го возникает еще одно возмущение, затем начинается фаза восстановления. Электронная концентрация отвечает уменьшением значений 10.09.2005г. на всех высотах ниже максимума слоя F2. Эти изменения N_e во время возмущений в дневное время можно представить как отклонения среднего за околополуденный период значения N_e в данный день от аналогичного значения в спокойный день: $dN = (N_{ex} - N_{av}) / N_{av}$ в процентах для высот 150, 170, 190 км и для высоты максимума слоя F2. Здесь N_{ex} – средняя за 10:00 – 14:00 LT (часовые измерения) величина N_e в каждый день возмущенного периода, N_{av} – аналогичная средняя величина N_e в спокойный день 20 сентября. Величины dN с 9 по 17 сентября для трех высот и высоты максимума F2 показаны в табл.1.

Табл. 1. Значения dN(%) за период 9-17 сентября 2005 г. на 3-х высотах и на высоте максимума слоя F2.

H/D	9.09	10.09	11.09	12.09	13.09	14.09	15.09	16.09	17.09
150км	+13	0	-5	-5	0	+2	+9	0	-5
170км	+12	-10	-12	-13	-12	-5	0	-13	-7
190км	+4	-14	-25	-31	-30	-15	-7	-30	-20
H _m F2	-14	-12	-6	-45	-32	-18	-16	-42	-23

Наибольшие изменения происходят в максимуме слоя F2 – до -45% в дни максимальной фазы возмущения, с уменьшением высоты отклик на возмущения уменьшается: на высоте 190 км до -25-30%, на 170 км – до -12% и на высоте 150 км dN меньше 10% по абсолютной величине.

Изменение электронной концентрации на 3-х высотах слоя F1 и в максимуме F2 в течение рассматриваемого периода по часовым измерениям представлено на рис.1б,в,г. Для сравнения был выбран спокойный день 20 сентября (A_p= 6). Значения N_e на всех высотах для этого дня нанесены на рис.1 по всему периоду более тонкими линиями.

Электронная концентрация на всех трех высотах слоя F1 11 сентября откликается на возмущения в противофазе со значениями N_mF2 , уменьшаясь на всех высотах.

Рис.1. Изменение D_{st} -индекса в период с 9 по 17 сентября 2005г. (а). Изменение N_mF2 и N_e на 3-х высотах (в – 190 км, г – 170 км, д – 150 км) (часовые измерения).

Таким образом, часовые изменения электронной концентрации показывают довольно стабильное поведение на нижних высотах слоя F1 даже во время сильных

возмущений в сентябре 2005 г. как в сравнении со спокойным днем, так и в сравнении с соседними днями рассматриваемого периода.

ЭЛЕКТРОННАЯ КОНЦЕНТРАЦИЯ В ВОЗМУЩЕННЫЙ ПЕРИОД СЕНТЯБРЯ 2005 Г. (5-МИН. ИЗМЕРЕНИЯ)

Мы исследовали поведение электронной концентрации во время возмущений в сентябре, используя 5-мин. измерения Иркутского дигизонда. Результаты - на рис. 2, где показаны изменения электронной концентрации с 7 по 12 сентября на 3-х высотах - 190, 170 и 150 км. Для иллюстрации здесь же (рис. 2, а) показаны вариации интенсивности потоков рентгеновских излучений в 2-х диапазонах: 1.0-8.0 Å (верхняя кривая) и 0.5-4.0 Å (нижняя кривая) с 7 по 12.09.2005. Ниже на этом рисунке (рис. 2, б) приведены изменения

А_р-индекса.

Рис.2. (а, б, в, г): а - вариации интенсивности потоков рентгена в 2-х диапазонах: 1.0-8.0 Å (верхняя кривая) и 0.5-4.0 Å (нижняя кривая) с 7 по 12.09.2005; б – вариации 3-х часового A_p – индекса в этот же период; в, г, д – изменение N_e на трех высотах (5мин. измерения).

Более подробно дневное изменение N_e на указанных высотах представлено на рис. 3 для трех дней – 9, 10 и 11 сентября. Начальная стадия развития возмущения 9 сентября в Иркутске приходится на вечерний период по местному времени, и на фоне спокойной геомагнитной обстановки электронная концентрация должна бы показывать обычное дневное изменение, однако, на рис. 2 и 3 совершенно другая картина.

Рис. 3. Изменения N_e по в дневное время на 3-х высотах: — 1 - 150 км, 2 -170 км, 3 – 190 км (5-мин. измерения)

Значения электронной концентрации N_e 9 сентября увеличились на всех высотах в сравнении со значениями в предыдущий день (см. рис. 2), для ее поведения характерно резкое изменение в короткие временные интервалы: с 8:10 до 9:20 LT на высоте 190 км электронная концентрация по абсолютной величине изменилась в 4,5 раза – (с 4, 5 до 1,0 $\cdot 10^5$ см⁻³); на высоте 170 км –в 3,5 раза (с 3,6 до 1,1 $\cdot 10^5$ см⁻³); на 150 км – в 2,5 раза (с 2,7 до 1,1 $\cdot 10^5$ см⁻³).

Как отмечалось выше, в часы, соответствующие ночному и раннему утреннему времени в Иркутске 9 сентября, зарегистрированы большие потоки рентгена от мощной вспышки на Солнце, и в течение дня 9.09.2005г. наблюдались вспышки меньшей интенсивности. Возможно, это и является причиной сильной изрезанности дневного изменения 5-мин. значений Ne 9 сентября. По мере развития геомагнитного возмущения 10 сентября абсолютные значения Ne уменьшились на всех высотах

примерно в 1,5 раза в сравнении с N_e на этих высотах 9 сентября. Изрезанность в дневных значениях N_e присутствует во все дни периода возмущений на всех указанных высотах.

Можно заключить, что электронная концентрация на высотах слоя F1 во время геомагнитных возмущений в сентябре 2005 г., по 5-мин. измерениям, отвечает на происходящие события намного активнее, чем по часовым измерениям, которые показывают сглаженные значения. Изменения абсолютных значений N_e происходят в течение коротких интервалов времени от 1,5 до 4-х раз. Самые большие изменения на высоте 190 км, но и ниже электронная концентрация активно реагирует на события, хотя амплитуда изменения N_e уменьшается с понижением высоты.

ПОВЕДЕНИЕ ПАРАМЕТРОВ f₀ F1 И h_m F1 В СЕНТЯБРЕ (5-МИН ИЗМЕРЕНИЯ)

Значения критической частоты слоя F1, измеренные в 5-мин интервалах времени, во время возмущений, меняются довольно спокойно: значения колеблются в пределах \pm (0,1-0,3)МГц около величины 4 МГц. Сильно меняется высота максимума слоя F1 (h_mF1) в короткие 5- минутные интервалы. (Рис. 4). Средние за период (10:00-14:00 LT) значения h_mF1 по часовым измерениям не отслеживают такие изменения: 9 сентября с 8:00 до 9:20 LT высота максимума поднимается со 170 до 220 км. Слой буквально «прыгает, как мячик» 10 сентября с 8:35 до 13:30 LT от значения 160 до 260 км. Максимальная фаза возмущения приходится на вечерние и ночные часы LT 11.09.2005г., поэтому ответом является отсутствие значений h_m F1 в утренние часы 12 сентября и значение 225 км в 8:00 LT, а в 8:10 LT высота h_m F1=150 км.

Таким образом, значительные изменения в параметре h_m F1 в ответ на возмущение часто происходят в короткие промежутки времени. Примером служит изменение 10 сентября – высота с 10:50 до 10:55 LT изменилась от 180 до 260 км, а в 11:00 вернулась к значению 185 км. Часовые измерения этой величины не отслеживают такие отклики на события.

Рис. 4. Изменение высоты максимума слоя hmF1 в дни 9, 10, 11, 12 сентября 2005 г. (5-мин. измерения)

Высота максимума в дни максимальной фазы возмущения повышается в сравнении со спокойным днем 20 сентября, если рассматривать средние околополуденные значения (10:00-14:00 LT), на 14-18 км: от 170 км до 188-186 км, самые низкие значения наблюдались 15 сентября: 161 км.

ИЗМЕНЕНИЕ ПАРАМЕТРОВ СЛОЯ F1 В АПРЕЛЕ 2005 Г Изменение параметров слоя F1 в апреле 2005 г.

Рассмотрено поведение аналогичных параметров области F во время умеренных по силе возмущений в апреле 2005 г.: в первом из них (5 апреля) среднесуточное значение планетарного индекса $A_p = 50$, во втором (12-13 апреля) – 30. Изменения электронной концентрации в часовые интервалы времени с 5 по 14 апреля на высотах 150, 170 и 190 км в сравнении с N_e на высоте максимума слоя F2 представлены на Рис. 5. На этом же рисунке для сравнения нанесены более тонкими линиями значения N_e в спокойный день 8 апреля для трех дней возмущений на всех высотах и для высоты максимума слоя F2.

На всех высотных уровнях в дневные часы наблюдалось понижение N_e в дни возмущений. Изменения электронной концентрации во время возмущений в сравнении со спокойным днем 8 апреля представлены как отклонения от средних за 21 день значений (±10 дней с центром в данный день) [9]. Рассмотрены величины $dN=(N_{ex}-N_{av}) / N_{av}$ в процентах для трех высот -150, 170, 190 км и высоты максимума слоя F2.

Здесь N_{ex} – экспериментальные N_e , N_{av} – средние за 21 день N_e . Указанные значения dN приведены для возмущенных дней 5, 12 и 13 апреля 2005 г. и спокойного дня 8 апреля в таблице 2. Отчетливо видно различие в dN в спокойный и возмущенные дни: если 8.04.2005г. значения dN преимущественно равны единицам процентов, то в возмущенные дни - они представляются десятками процентов, причем в сторону понижения N_e . Максимальные по модулю значения dN отмечались 5 апреля в дополуденные часы, 12 и 13 апреля – в период 11:00-13:00 LT.

Ниже максимума F2 реакция по часовым значениям <u>Ne</u> в дни возмущений уменьшается с понижением высоты: если 5 апреля на высоте 190 км dN составляет в околополуденные часы -30-40%, на h = 170 км эта величина от -15 до -20%, а на h = 150 км -10%. В остальные дни возмущений изменения электронной концентрации аналогичны.

Рис. 5(а,б,в,г,д). а - изменение Dst-индекса с 5 по 14 апреля 2005г., б – изменение параметра NmF2; в, г, д –электронная концентрация Ne на высотах 190, 170 и 150 км, соответственно (часовые измерения).

Табл. 2.	Значения	dN(%) в	возмущенные	дни 5,	12 и	13	апреля	ИВ	спокой	ный
день 8.04.2005.										

H/LT	6	7	8	9	10	11	12	13	14	15	16	17	18
КМ			dN(%), 8.	04.200	5							
150	-1	-1	6	5	0	2	2	3	0	4	-4	-10	-1
170	-9	-6	10	3	-1	1	1	2	0	4	-5	-9	-9
190	-19	-9	8	1	-5	3	3	2	9	7	-6	-4	-7
H _m F2	-8	-5	-12	-10	-5	2	6	10	7	-7	5	9	-4
	dN(%), 5.04.2005												
150	-9	-10	7	-8	-6	-10	-9	-12	-12	-5	-6	-5	1
170	-27	-17	-1	-10	-15	-19	-18	-20	-17	-11	-11	-13	-3
190	-45	-32	-19	-22	-30	-39	-38	-38	-29	-23	-21	-30	- 24
H _m F2	-39	-51	-41	-37	-61	-42	-43	-37	-37	-34	-30	-35	- 25
	dN(%), 12.04.2005												
150	0	-7	-3	-6	-5	-3	-2	-6	-3	-2	-4	-8	-8
170	-20	-19	-19	-16	-20	-28	-29	-19	-20	-17	-14	-16	- 26
190	-4	-32	-25	-22	-36	-41	-37	-29	-21	-28	-12	-13	- 20
H _m F2	1	-18	-20	-20	-34	-38	-20	-29	-15	-22	-11	-11	- 12
						dN(%)	, 13.04	4.2005					
150	-7	-5	-7	-6	-9	-8	-6	-9	-11	-4	-4	-18	12
170	-26	-23	-22	-21	-24	-29	-31	-29	-32	-23	-17	-25	- 15
190	-37	-30	-27	-33	-35	-40	-47	-42	-28	-22	-27	-28	- 22
H _m F2	-34	-29	-21	-33	-33	-37	-46	-33	-6	-14	-27	-25	- 20

Изменения электронной концентрации в дни возмущений (5, 12 и 13 апреля) и в спокойный день 8 апреля 2005 г. на трех высотах по 15-мин измерениям показаны на рис. 6. Можно отметить, что в дни возмущений отсутствует картина сильной изрезанности в значениях N_e , характерная для 5-мин. измерений в сентябре 2005 г. В сравнении со спокойным днем 8 апреля ($A_p=3$) отмечается понижение абсолютных значений электронной концентрации на всех рассматриваемых высотах.

Параметр f0F1 почти не откликается на возмущения. Можно отметить увеличение высоты максимума h_mF1 в дни возмущений в сравнении со средним значением за период (10:00-14:00 LT) спокойного дня 8 апреля, которое составляет 163 км. Аналогичное значение высоты максимума F1 5 апреля выше соответствующей величины на 24 км, 12 апреля на - 15 км и 13 апреля - на 19 км (по часовым измерениям).

Рис. 6. Изменение электронной концентрации в дни возмущений (5, 12 и 13 апреля) и в спокойный день 8 апреля 2005 г. на трех высотах: 1 – 150 км, 2 – 170 км, 3 – 190 км (15-мин измерения).

Изменение параметра h_mF1 в дни возмущений (рис. 7) гораздо интенсивнее по 15- мин. измерениям: значения меняются от 170 до 195-200 км 5 и 12 апреля. Таким образом, возмущения в апреле, умеренные по своей величине, вызывают относительное изменение электронной концентрации dN до -30-45% на высоте 190 км, ниже реакция меньше: от - 15 до - 30% и до -10% на h= 150 км. Измерения в 15-мин.

интервалы не показывают значительных изменений в поведении электронной концентрации на рассматриваемых высотах. Заметно реагирует на возмущения параметр h_m F1 в 15-мин. значениях, но в часовых измерениях эти изменения сглаживаются.

Рис. 7. Изменение высоты максимума слоя F1 для 3-х дней апреля 2005 г. (8 апреля – спокойный день)

ОЦЕНКА ОТНОШЕНИЙ ОСНОВНЫХ ГАЗОВЫХ СОСТАВЛЯЮЩИХ ДЛЯ ВОЗМУЩЕНИЙ В АПРЕЛЕ И СЕНТЯБРЕ 2005 Г

Результаты исследования связи ионосферы с состоянием нейтрального газа, приводимые в литературе, а также исследования в этом направлении, проведенные авторами настоящей работы [10,11] дают основание полагать, что необходима корректировка модели термосферы в части отклика на геомагнитные возмущения. Это определяется тем, что не во всех случаях наблюдаемые во время возмущений изменения в ионосфере однозначно связаны с соответствующими вариациями в газовом составе термосферы. Поэтому контроль за состоянием нейтральной атмосферы, которым определяется поведение ионосферы в конкретных условиях, представляет собой актуальную и важную задачу.

В настоящей работе мы оцениваем реакцию термосферы на эти возмущения из анализа вычисленных отношений основных газовых составляющих в околополуденное местное время. Для этой цели по методике [10] были рассчитаны отношения с использованием коэффициентов уравнения регрессии модели [1], полученных на основе экспериментальных данных по электронной концентрации N_e за период 2003-2008 гг. Уравнение модели может быть записано в следующем виде:

$$N_{e}/N_{av} = X1 + X2 \Box [n_{1}/(5n_{2}+n_{3})]^{1,5} + X3 \Box (n_{1}/n_{3})^{0,5} \Box (\cos\Box)^{0,5} + X4 \Box \exp[-(T_{ex} - 600)/600] + X5 \Box (E/E_{0})$$
(1)

Здесь N_e - электронная концентрация. Величина N_{av} определяет среднее значение N_e по всему объему использованных данных отдельно для каждой высоты. X_j - искомые коэффициенты уравнения, n1, n2, n3 - концентрации частиц атомного кислорода, молекул кислорода и азота, соответственно, на 120 км в модели термосферы [12]. Т_{ех}-температура экзосферы, \Box -зенитный угол Солнца. Член X5•(E/E₀) показывает зависимость от относительной величины энергии потока ионизирующего излучения в диапазоне 5-105 нм по модели [13]. Е₀ - величина Е при максимуме солнечной активности, когда F_{10,7} =250. Коэффициенты уравнения (1) были получены с помощью модели термосферы МСИС-86 и при использовании экспериментальных данных по N_e, полученных на Иркутском дигизонде в 2003-2008 гг. Эти же измерения N_e для полудня на высотах 120, 130,...,190, 220 км использовались для оценок относительных газовых составляющих. Уравнение модели (1) может быть записано в следующем виде:

$$N_{e}/N_{av} = X1 + X2 \cdot R \cdot \sqrt{R} \cdot W + X3 \cdot \sqrt{R} \cdot (\cos \chi)^{0,5} + X4 \cdot \exp(-(T_{ex} - 600)/600) + X5 \cdot (E/E_{0})$$
(2)

Здесь R=([O]/[N₂]); W=[1/(1+5R₂)]^{1,5}, R₂= [O₂]/[N₂], затем можно определить и R₂/R = O₂]/[O]. Величины R, R₂, R₂/R из выражения (2) можно оценить, если имеются данные по N в рассматриваемом диапазоне высот 120-200 км. Здесь в дневное время в большинстве случаев выполняется условие фотохимического равновесия, что и позволяет использовать выражение (2) для решения поставленной обратной задачи. Поскольку в этой формуле величины R и R₂ относятся к высоте 120 км, то мы их можем оценить именно для опорного уровня термосферы, используя N_e на других высотах. Процедура вычислений подробно описана в работах [10,11].

В Таблице 3 представлены величины отношений $[O]/[N_2]$ и $[O_2]/[O]$ для периода с 1 по 20 апреля 2005 г. Выделены дни, соответствующие умеренным по силе геомагнитным возмущениям. Значения r1= R/R_M, r3= R3/R3_M – отношения полученных величин $[O]/[N_2]$ и $[O_2]/[O]$ к их значениям по модели [12], соответственно.

Табл. 3. Оценки отношений [O]/[N₂] и [O₂]/[O] и величины r1 и r3 для апреля 2005г. (полдень, высота 120 км)

data	Ap	R=	rl =	R3 =	r3=
	_	O/N_2	R/R_M	O_{2}/O	<i>R3/R3_M</i>
1.4.2005	5	0,31	1,28	0,51	0,93
2	3	0,29	1,20	0,58	1,14
3	5	0,30	1,24	0,58	1,15
4	26	0,32	1,34	0,56	1,00
5	50	0,21	0,94	1,05	1,58
6	10	0,27	1,19	0,45	0,77
7	6	0,23	0,95	0,65	1,22
8	3	0,27	1,12	0,56	1,10
9	3	0,24	1,00	0,46	0,92
10	2	0,30	1,25	0,55	1,11
11	11	0,30	1,28	0,47	0,85
12	30	0,20	0,90	0,80	1,24
13	30	0,22	1,01	0,86	1,35
14	16	0,28	1,27	0,46	0,76
15	13	0,26	1,14	0,55	0,97
16	6	0,28	1,19	0,60	1,10
17	4	0,28	1,18	0,47	0,95
18	6	0,28	1,22	0,60	1,15
19	7	0,23	1,02	0,49	0,91
20	20	0,28	1,26	0,66	1,12

В дни возмущений 5, 12 и 13 апреля значения $R = [O]/[N_2]$ уменьшаются, согласно нашим оценкам, примерно на 30% относительно спокойного дня 8 апреля. В сравнении с моделью МСИС-86 значения R в эти дни ниже на 10%, тогда как в остальной период апреля наши оценки выше соответствующих модельных на 15 - 30%

Сопоставление с данными отношений концентраций атомарного кислорода к молекулярному азоту [O]/[N2] на высотах нижней термосферы, полученными УФспектрометром пространственного сканирования GUVI (Global Ultraviolet Imager) [14], установленным на борту спутника TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics), проведенное для этих дней по нашему региону дает подтверждение правильности наших оценок: величины [O]/[N₂] по GUVI для 5, 12 и 13 апреля таковы: 0,22; 0,21 и 0,23, соответственно. Данные взяты с сайта [http://guvi.jhuapl.edu/] [15].

Другое отношение [O₂]/[O] показывает значительное увеличение в дни возмущений – в 2 раза 5 апреля, в 1,6 раз 12 и 13 апреля в сравнении со спокойным днем. Наши оценки превышают значения по модели МСИС: на 60% 5 апреля, на 25 и 35% 12 и 13 апреля. В остальной период отличия от модельных величин в пределах 10 ÷ 25%.

В табл.4 показаны отношения основных газовых составляющих, рассчитанные для возмущений в сентябре 2005 г.

Табл. 4. Оценки отношений [O]/[N₂] и [O₂]/[O] и величины r1 и r3 для сентября 2005г. (Полдень, высота 120 км)

data	Ap	R=	$rl = R/R_M$	R3=	r3=
		O/N_2		O_2/O	$R3/R3_M$
1.09.2005	14	0,19	0,89	0,66	1,03
2	39	0,24	1,15	0,49	0,74
3	27	0,21	1,03	0,71	0,98
4	24	0,19	0,93	0,61	0,93
5	11	0,18	0,84	0,55	0,94
6	8	0,20	0,90	0,59	1,04
7	10	0,17	0,79	0,40	0,66
8	6	0,27	1,19	0,64	1,14
9	17	0,27	1,24	0,47	0,82
10	33	0,16	0,73	0,72	1,14
10 11	33 101	0,16 0,18	0,73 0,89	0,72 0,64	1,14 0,72
10 11 12	33 101 75	0,16 0,18 0,19	0,73 0,89 0,95	0,72 0,64 0,86	1,14 0,72 1,03
10 11 12 13	33 101 75 44	0,16 0,18 0,19 0,16	0,73 0,89 0,95 0,79	0,72 0,64 0,86 0,70	1,14 0,72 1,03 0,93
10 11 12 13 14	33 101 75 44 18	0,16 0,18 0,19 0,16 0,24	0,73 0,89 0,95 0,79 1,12	0,72 0,64 0,86 0,70 0,62	1,14 0,72 1,03 0,93 1,00
10 11 12 13 14 15	33 101 75 44 18 52	0,16 0,18 0,19 0,16 0,24 0,24	0,73 0,89 0,95 0,79 1,12 1,10	0,72 0,64 0,86 0,70 0,62 0,70	1,14 0,72 1,03 0,93 1,00 1,04
10 11 12 13 14 15 16	33 101 75 44 18 52 18	0,16 0,18 0,19 0,16 0,24 0,24 0,24	0,73 0,89 0,95 0,79 1,12 1,10 0,81	0,72 0,64 0,86 0,70 0,62 0,70 0,89	1,14 0,72 1,03 0,93 1,00 1,04 1,51
10 11 12 13 14 15 16 17	33 101 75 44 18 52 18 12	0,16 0,18 0,19 0,16 0,24 0,24 0,24 0,18 0,23	0,73 0,89 0,95 0,79 1,12 1,10 0,81 1,00	0,72 0,64 0,86 0,70 0,62 0,70 0,89 0,81	1,14 0,72 1,03 0,93 1,00 1,04 1,51 1,42
10 11 12 13 14 15 16 17 18	33 101 75 44 18 52 18 12 10	0,16 0,18 0,19 0,16 0,24 0,24 0,24 0,23 0,23 0,26	0,73 0,89 0,95 0,79 1,12 1,10 0,81 1,00 1,11	0,72 0,64 0,86 0,70 0,62 0,70 0,89 0,81 0,49	1,14 0,72 1,03 0,93 1,00 1,04 1,51 1,42 0,90
10 11 12 13 14 15 16 17 18 19	33 101 75 44 18 52 18 12 10 6	0,16 0,18 0,19 0,16 0,24 0,24 0,24 0,24 0,23 0,26 0,26	0,73 0,89 0,95 0,79 1,12 1,10 0,81 1,00 1,11 1,10	0,72 0,64 0,86 0,70 0,62 0,70 0,89 0,81 0,49 0,53	1,14 0,72 1,03 0,93 1,00 1,04 1,51 1,42 0,90 1,02

Величина R= $[O/N_2]$ в дни максимальной фазы возмущения 11, 12 и 13 сентября уменьшается примерно в полтора раза по отношению к значению в спокойный день 20 сентября и меньше аналогичных величин по модели на 20-30%. Данные по GUVI [15] выше наших отношений в дни максимальной фазы возмущений в сентябре: для нашего региона они порядка 0,25-0,3.

Оценка другой величины [O₂]/[O] дает увеличение в дни возмущений в среднем до 40% относительно спокойного дня. Отличия от модельных значений от 10 до 30%.

выводы

Проведенный анализ поведения отдельных параметров слоя F1 во время возмущений в апреле и сентябре 2005 г. на станции Иркутск позволил сделать следующие выводы:

1. Во время геомагнитных возмущений в апреле и сентябре наибольшие относительные изменения электронной концентрации происходят на высоте максимума слоя F2 -от -60 до -45% в дни максимальной фазы возмущения. С понижением высоты отклик на возмущения уменьшается: на 190 км до -25-40%, на 170 км – до -20-30% и на h=150 км величина dN меньше 10%, т. е. на нижних высотах слоя F1 поведение электронной концентрации более стабильно как во время сильных, так и во время умеренных возмущений.

Отмечаются значительные изменения в N_e во время 5- мин. измерений в сентябре: N_e меняется по абсолютной величине от 1,5 до 4 раз, демонстрируя сильнейшую изрезанность в дневном поведении на трех рассматриваемых высотах в течение всего периода возмущений. В апреле такого поведения не наблюдается. Можно предположить, что совместное влияние сильнейшей энергетики солнечных вспышек и геомагнитных возмущений, характерных для сентября, вносит свой вклад в интенсивный отклик некоторых ионосферных параметров на возмущения.

2. Параметр h_m F1- высота максимума слоя F1- возрастает во время возмущений в сентябре по средним за 10:00-14:00 LT значениям на 18 км, в апреле – на 25 км. Значительное изменение h_m F1 происходит в 5-ти минутные интервалы времени измерений в сентябре: высота может меняться в пределах ±80 км за 5-10 минут. Часовые измерения этой величины не отслеживают такие отклики на события. В апреле также характерно значительное изменение этого параметра в короткие 15-мин. интервалы измерений.

3. Реакцию термосферы на возмущения в апреле и в сентябре 2005 г. мы оцениваем, из анализа вычисленных отношений основных газовых составляющих [O]/[N₂] и [O₂]/[O] в околополуденное местное время. В дни возмущений в апреле значения [O]/[N₂] уменьшаются, согласно нашим оценкам, примерно на 30% в сравнении со спокойным днем, и ниже на 10% модельных значений [12]. Сравнение с данными [O]/[N₂] по GUVI для этих дней по нашему региону дает подтверждение

327

правильности наших оценок: величины [O]/[N₂] по GUVI в дни 5, 12 и 13 апреля, соответственно, равны: 0,22; 0,21 и 0,23.

Оценки отношения [O₂]/[O] показывают увеличение в 1,6 - 2 раза в сравнении со значением в спокойный день и превышают значения по модели МСИС от 35 до 60% в дни возмущений.

В сентябре оценки R1= $[O]/[N_2]$ в дни максимального возмущения в сравнении с моделью МСИС меньше на 20-30%. В апреле это отличие составляло 10%. Данные по GUVI выше наших отношений в дни максимальной фазы возмущений: для нашего региона они порядка 0,25-0,3. Оценка $[O_2]/[O]$ в дни возмущений выше значения в спокойный день примерно на 45%, различия с модельными значениями от 10 до 30%.

В работе мы использовали экспериментальный материал по N_e и коэффициенты модели, полученные на его основе, для нашего региона, поэтому можно предположить, что реальный газовый состав претерпевает существенные отличия от модельного в возмущенных условиях. Дальнейшая разработка и усовершенствование предлагаемой методики использования ионосферных измерений для определения относительных газовых составляющих позволит получать значения этих величин для разных периодов, сезонов года в различных условиях солнечной и геомагнитной активности и предоставит возможность отслеживать состояние термосферы в текущий период.

ЛИТЕРАТУРА

1. Щепкин Л.А., Кушнаренко Г.П., Кузнецова Г.М. Уравнение модели связи электронной концентрации с характеристиками термосферы с учетом потока ионизирующего излучения // Геомагнетизм и аэрономия. Т. 44. N1. С. 119-122. 2004.

2. Lastovicka J. Monitoring and forecasting of ionospheric space weather-effects of geomagnetic storms // .Atm. Terr. Phys. 2002. V.64. P.697-705.

3. Куркин В.И., Полех Н.М., Пирог О.М., Поддельский И.Н., Степанов А.Е. Ионосферные возмущения в северо-восточном регионе России по данным ионозондов в периоды равноденствия // Космич. Исслед.2008, том 46, №4, с.1-8.

4. [http://sec.noaa.gov/]

5. [http://swdcdb.kugi.kyotou.ac.jp/dstdir]

6. Гивишвили Г. В. Иванов-Холодный Г. С., Лещенко Л. Н., Чертопруд В. Е. Солнечные вспышки и газовый состав верхней атмосферы // Геомагнетизм и аэрономия. 2005. Т.45, №2. - С.263-267

7. Фридман Г. Ионизующее излучение Солнца в кн.» Физика верхней атмосферы». М.1963. С.125-201.

8. Хинтереггер Х.Е. в кн.»Ультрафиолетовое излучение Солнца и межпланетная среда.» М.1962. с.47-64.

9. Щепкин Л.А., Кушнаренко Г.П., Кузнецова Г.М. Возмущения в области F1 ионосферы в апреле 2005 г. // Солнечно-земная физика. 2009. вып.13.С.30-33.

10. Щепкин Л.А., Кушнаренко Г.П., Кузнецова Г.М. Возможности оценок относительного содержания атомов и молекул кислорода по данным измерений электронной концентрации в средней ионосфере // Геомагнетизм и аэрономия. Т. 48. N1. C. 1-5. 2008.

11. Щепкин Л.А., Кузнецова Г.М., Кушнаренко Г.П. "Оценки относительного содержания атомов и молекул кислорода на высоте 120 км по данным ионосферных измерений" //Геомагнетизм и аэрономия".2009. Т.49, N 4. С.129-133.

12. Hedin A.E. MSIS-86 thermospheric model // J. Geophys. Res. 1987. V. 92, N A5. P. 4649-4662.

13. Tobiska W. K. and F. G. Eparvier EUV97: Improvements to EUV irradiance modeling in the soft x-rays and EUV // Solar Phys. 1998. V. 147, N1. P. 147-159.

14. Humm D.C. et. al. Design and performance of the Global Ultraviolet Imager (GUVI) // Proc. SPIE X-Ray and Gamma-Ray Instrumentation for Astronomy IX, V.3445. P. 2-12. 1998.

15. [http://guvi.jhuapl.edu/]