ПРОЕКТИРОВАНИЕ ТЭГ АНТЕННЫ КРУГОВОЙ ПОЛЯРИЗАЦИИ ДЛЯ ПАССИВНЫХ МИКРОВОЛНОВЫХ СИСТЕМ RFID

А. А. Бабаскин^{*}, В. И. Калиничев^{**} *RF MTech, Seoul, Korea; ^{**}ИРЭ РАН, Москва

Получена 29 февраля 2008 г.

Предложен вариант тэг антенны круговой поляризации для применения в пассивных микроволновых системах RFID.

Введение

Пассивные системы радиочастотной идентификации (RFID) [1] относятся к классу беспроводных технологий передачи и сбора данных, в которых опрашивающее приемопередающее устройство, или ридер (reader, interrogator) излучает модулированный RF сигнал в направлении радиометки, или тэга (tag, transponder), который состоит из антенны и интегрированного с ней полупроводникового чипа. Необходимую для активации мощность чип получает через антенну из падающей электромагнитной волны. Активированный чип изменяет свой входной импеданс в соответствии с заложенной в его память информацией и тем самым модулирует отраженный ответный сигнал, детектируемый приемным устройством ридера.

Большинство разработанных к настоящему времени различных вариантов тэг антенн (см., например, статью [2] и список литературы в ней) являются линейно поляризованными. Очевидно, что в этом случае поляризационные потери в RFID системе отсутствуют, если излучение ридера также линейно-поляризованное и векторы поляризации ридера и тэга являются коллинеарными. Однако такое поляризационное согласование не всегда можно осуществить на практике. Наоборот, в общем случае тэги могут быть случайным образом ориентированы относительно линейно поляризованной антенны ридера, что приводит к неизбежным поляризационным потерям и, как следствие, к уменьшению расстояния чтения вплоть до полного отсутствия отклика тэга, когда поляризации ридера и тэга случайно оказываются ортогональными. Отметим также, что даже при согласовании линейных поляризаций ридера и тэга неизбежны интерференционные минимумы (нули) при наличии в поле антенны ридера проводников, например, проводящего пола или какого-либо грунта. Для снижения ориентационной зависимости (чувствительности) расстояния чтения от направления тэга в пространстве обычно используют ридер, излучающий поле круговой поляризации. При этом возникают неизбежные потери (порядка 3 дБ) на поляризационное рассогласование антенны ридера и линейно-поляризованной антенны тэга.

Для обеспечения относительной пространственной однородности плотности потока мощности поля ридера при наличии проводящих поверхностей и для ориентационной инвариантности дальности чтения без внесения дополнительных поляризационных потерь актуальной задачей является проектирование тэг антенн с круговой поляризацией. Такие антенны обладали бы поляризационным согласованием с излучением ридера круговой поляризации независимо от взаимной ориентации ридера и тэга. Для количественной характеристики степени независимости расстояния чтения от взаимного положения тэга и ридера в [3, 4] используется величина т.н. ориентационной чувствительности (orientation sensitivity), равная отношению минимального и максимального расстояния чтения при произвольном положении тэга относительно ридера. Идеальной для систем RFID является величина, равная 1. Для достижения этого в ряде работ были предложены варианты

ориентационно независимых тэгов без поляризационных потерь. Можно заметить, что суть предлагаемых решений состоит в комбинировании (синфазном сложении) сигналов ортогональных составляющих поля падающей волны либо внутри чипа [3], либо в антенне [4-6]. Первый подход предполагает использование двухпортовой антенны и двухпортового чипа. Что касается второго подхода, при котором используются традиционные однопортовые чипы, то авторам известны, по крайней мере, три конструкции тэг антенн круговой поляризации, заявленные в [5-7]. В [5, 7] описываются конструкции со спиральной антенной и патчевой антенной, необходимым дополнительным элементом которых является металлический слой (ground).

Из соображений простоты изготовления и низкой себестоимости особый практический интерес представляет реализация планарных тэг антенн круговой поляризации. В [6] предложена планарная конструкция антенны из двух скрещенных диполей с размерами 60х60 мм, возбуждение которых осуществляется со сдвигом фаз 90^{0} . Указанная ссылка представляет собой лишь краткое описание патента, в котором, к сожалению, содержится недостаточно информации. Как заявлено в описании, усиление антенны на частоте 915 МГц составляет около -2 dB, отношение осей эллипса поляризации (AR) в направлении максимума излучения около 2.5 dB, при 60^{0} отклонении от этого направления диапазон изменения AR составляет от 5 до 8 дБ, ширина полосы по уровню VSWR 2:1 - около 10%.

В данной работе предложен простой вариант тэга с антенной круговой поляризаци, нагруженной на стандартный чип с одной парой зажимов. Используется печатная антенна петлевого типа, не требующая дополнительной металлизации на противоположной стороне подложки. Описание антенны представлено в следующем разделе.

1. Модель тэг антенны, нагруженной на чип

Размеры предложенного тэга 75х50х0.8 мм не превышают размеров стандартной кредитной карточки. Модель тэг антенны, расположенной вблизи пластины из стекла, показана на рис. 1. В численной модели пространство вокруг антенны с прилегающим участком стекла окружено воздушным боксом достаточно большого размера (не показан на рисунке) и с граничными условиями, обеспечивающими эффективное поглощение падающих электромагнитных волн на его стенках. Красным цветом обозначена структура тэг антенны, в которой планарная проводящая часть имеет толщину металлизации 0.018 мм и интегрирована с тонкой диэлектрической подложкой РЕТ Laminate толщиной 0.8 мм, с относительной диэлектрической проницаемостью $\varepsilon = 3$ и углом потерь tg $\delta = 2 \cdot 10^{-3}$. Синим цветом представлен прилегающий к антенне участок автомобильного ветрового стекла с толщиной 10 мм, с относительной диэлектрической проницаемостью $\varepsilon = 5.5$ и углом потерь tg $\delta = 5 \cdot 10^{-3}$. В данной модели плоскость антенны расположена на расстоянии 9 мм от нижней поверхности стекла.

Рис. 1. Трехмерная модель печатной тэг антенны, расположенной вблизи стекла

Антенна представляет собой нагруженный на прямоугольную петлю гибрид патчевой и щелевой антенны. Гибрид расположен внутри рамки, и его щель образует углы в 45⁰ с двумя прилегающими сторонами рамки. Противоположная относительно патча сторона рамки электрически удлинена в форме меандровой линии (см. рис. 1). Чип присоединятся к антенне между краями щели на определенном расстоянии от её конца, как показано на рис. 2. Это расстояние, а также ширина перпендикулярного щели прямоугольного выреза в патче и периметр петли определяют входной комплексный импеданс антенны и ее поляризационные свойства.

Рис. 2. Включение чипа между краями щели в тэг антенне (обозначен красной стрелкой)

При заданном расположении тэга относительно стекла и при заданных параметрах материалов размеры антенны и положение чипа вдоль щели подбираются, исходя из условия согласования тэга и антенны на уровне не хуже -10 дБ и круговой поляризации излучения в диапазоне частот от 910 до 914 МГц. В этом диапазоне входной импеданс чипа хорошо описывается параллельным включением резистора R=1500 ом и емкости C=1.3 пФ, которые в данной модели могут быть описаны с помощью имеющихся в библиотеке HFSS т.н. lumped boundary conditions.

2. Результаты моделирования тэг антенны в режиме излучения

Характеристики тэг антенны моделировались на центральной частоте 912 МГц и в более широком диапазоне частот от 900 МГц до 930 МГц. Количество шагов в адаптивной процедуре сходимости задавалось достаточно большим, при котором критерий сходимости, равный абсолютной величине разности S_{11} на текущем и предыдущем шагах, не превышает 0.009. Предполагаем, что при этом разбиение структуры на тетраэдры является вполне адекватным для моделирования ее характеристик с приемлемой для практики степенью точности. Частотная зависимость согласования чипа и антенны в виде обратных потерь в дБ показана на рис. 3. Минимальный коэффициент отражения достигается на частоте 906 МГц и равен -18.8 дБ. На частоте 912 МГц имеем /S11/ = -11.9 дБ. По уровню обратных потерь -10 дБ полоса антенны составляет 14 МГц.

Рис. 3. Согласование чипа и тэг антенны в окрестности рабочего диапазона

На рис. 4 показана диаграмма направленности излучения в дальней зоне на частоте 912 МГц. Максимальная напряженность поля Е в дальней зоне наблюдается при (θ = -8⁰, φ =136⁰), т.е. близко к нормали к плоскости антенны. При этом максимальная направленность D = 3.085 дБ, и при эффективности излучения e= 0.876 усиление антенны равно G=De= 2.51 дБ. Абсолютное усиление с учетом рассогласования антенны и чипанагрузки при / S_{11} /=0.254 на частоте 912 МГц составляет G_{abs} = (1-/ S_{11} /²) De = 2.22 дБ.

Рис. 4. Трехмерная диаграмма направленности излучения тэг антенны и ее сечения в плоскостях $\phi=0$ (ZOX) и $\phi=90^0$ (ZOY)

Расчет характеристик поля в дальней зоне показывает, что излучение является эллиптически поляризованным. На рис. 5 показана рассчитанная частотная зависимость отношения большой и малой осей эллипса поляризации (AR) в дБ в дальней зоне. На частоте 912 МГц имеем AR=2.0 дБ. По уровню AR=3.0 дБ полоса антенны составляет примерно 16 МГц.

Рис. 5. Частотная зависимость AR в дБ в окрестности рабочего диапазона (частота F_i в ГГц)

Для определения ориентации эллипса поляризации относительно декартовых осей координат X,Y в направлении $\theta=0$ (вдоль нормали к плоскости антенны) воспользуемся значениями амплитуды и фазы компонент поля (rE_{θ} , rE_{ϕ}) в дальней зоне (рис. 6).

Рис. 6. Угловые зависимости фазы и нормированных амплитуд для компонент поля в дальней зоне в плоскостях φ=0 и φ=90⁰

Из рис. 6 следует, что, например, в плоскости $\varphi=0$ расчетные нормированные значения амплитуды при $\theta=0$ равны $mag(rE_{\theta})=0.819$, $mag(rE_{\varphi})=0.917$, а их фазы соответственно arg $(rE_{\theta})=174.76^{\circ}$, arg $(rE_{\varphi})=-106.64^{\circ}$. Воспользовавшись формулами (2.66), (2.67) в [8] и подставляя в них $E_{x0} = mag(rE_{\theta})=0.819$, $E_{y0} = mag(rE_{\varphi})=0.917$, получаем величины большой и малой осей эллипса поляризации OA=0.963, OB=0.764, откуда AR=OA/OB=1.26=2.00 дБ, что в точности равно значению на частоте 912 МГц на рис. 5. На рис. 7а показана траектория, описываемая концом вектора $\vec{E}(\omega t) = \vec{a_x}E_{x0}\cos(\omega t - \varphi_x) + \vec{a_y}E_{y0}\cos(\omega t - \varphi_y)$ в дальней

зоне, где магнитуды E_{x0} , E_{y0} определены выше, а $\varphi_x = arg (rE_{\theta})=174.76^0$, $\varphi_y = arg (rE_{\varphi})=-106.64^0$. На рис.76 эллипс поляризации построен в виде зависимости $E_x(\omega t)$ от $E_y(\omega t)$, причем оси координат на этом

Рис. 7. (а) Эллипс поляризации, описываемый концом вектора $\vec{E}(\omega t)$ на оси антенны в дальней зоне при изменении ωt от 0 до 360^{0} ; (б) зависимость $E_{x}(\omega t)$ от $E_{y}(\omega t)$ на частоте 912 МГн

рисунке заданы так, чтобы согласовать пространственное положение осей эллипса с геометрией тэга в системе координат XOY в модели на рис. 1. Из рис. 7а следует, что первое значение угловой координаты на периоде от 0 до 360^{0} , соответствующее положению большой оси эллипса, равно $\omega t = 49^{0}$, при этом $E_x(\omega t) = -0.478$, $E_y(\omega t) = -0.836$, а наклон большой оси эллипса по отношению к оси OY составляет примерно 30^{0} . Для определения направления вращения вектора \vec{E} можно, например, построить его анимированное распределение на верхней грани воздушного бокса, расположенной на расстоянии 100 мм от плоскости тэг антенны. Пример такого векторного распределения, зафиксированного в определенный момент времени, при котором направление вектора \vec{E} примерно соответствует направлению вдоль большой оси эллипса поляризации, представлен на рис. 8. В нем красный цвет соответствует максимальной напряженности поля *E*. Анимация данного векторного распределения на периоде колебаний показывает, что вращение вектора \vec{E} происходит по часовой стрелке, если наблюдать со стороны +Z (волна приближается), что соответствует лево-круговой эллиптической поляризации данной тэг антенны.

Рис. 8. Распределение вектора \vec{E} на верхней грани воздушного бокса в фиксированный момент времени

На рис. 9 представлен дополнительный параметр, характеризующий поляризационные свойства антенны, – поляризационное отношение, или polarization ratio (PR). В данном случае он определяется как отношение амплитуды лево-круговой компоненты (LHCP) к амплитуде право- круговой (RHCP) компоненты в поле излучения тэг антенны. Как видно из рисунка, LHCP компонента является преобладающей на оси антенны, при этом PR составляет 18.80 дБ.

Рис. 9. Отношение амплитуды LHCP компоненты к амплитуде RHCP компоненты (в дБ) в поле излучения тэг антенны в зависимости от угла места в двух плоскостях $\phi=0$ и $\phi=90^0$

На рис.10 а-с показаны рассчитанные на частоте 907 МГц угловые зависимости отношения большой и малой осей эллипса поляризации AR (дБ) в дальней зоне. Как видно из

Рис. 10 (а) Величина AR (дБ) в зависимости от угла места. Семейство кривых разных цветов соответствует различным азимутальным углам от φ=0 до φ=360⁰ с шагом 10⁰. Метка 1 указывает положение абсолютного максимума AR

рисунков 10 б, с, в зависимости AR от угла места θ и азимутального угла ϕ наблюдаются три характерных экстремума: абсолютный максимум AR=61 дБ при ϕ =310⁰, θ =90⁰; абсолютный минимум AR=0.39 дБ при ϕ =100⁰, θ =30⁰; и условный минимум AR=0.51 дБ при ϕ =210⁰, θ =50⁰. В направлении по нормали к плоскости антенны θ =0 AR=1.72 дБ. Диапазон углов θ , при котором AR не превышает 3дБ для любых углов ϕ , приближенно равен 25⁰. Значения AR при θ =60⁰ изменяются от 2 до 9 дБ.

Рис. 10 (б) Величина AR (дБ) в зависимости от угла места для некоторых характерных направлений. Метка 1 соответсвует AR в направлении нормали к антенне, метка 2 - абсолютному минимуму AR, метка 3 - условному минимуму AR, метки 4 и 5 - минимальному и максимальному значениям AR при характерном угле места 60⁰

Рис. 10 (с) Трехмерный график, иллюстрирующий зависимость величины AR (дБ) от направления излучения. Диапазон изменений угла места - $0^0 - 90^0$, азимутального угла $0^0 - 360^0$.

3. Падение плоской волны круговой поляризации на тэг антенну

Как уже указывалось, в пассивных микроволновых системах RFID, рассчитанных на максимальное расстояние чтения, тэг находится в дальней зоне излучения ридера, и в этом случае расстояние чтения определяется величиной наводимого на зажимах чипа напряжения, которое зависит, в частности, от напряженности поля в падающей плоской волне. Поэтому с практической точки зрения важно также рассмотреть задачу падения плоской воны на тэг,

которая является обратной и дополнительной к рассмотренной выше задаче излучения тэг антенны, нагруженной на чип-генератор. Предположим, что на заданный тэг падает плоская волна левой круговой (LHCP) или правой круговой (RHCP) поляризации с напряженностью поля E = 1 В/м. Требуется найти напряжение поля в щели в обоих случаях и их отношение. Эту задачу можно решать по-разному. Сначала приведем достаточно простые аналитические оценки. Предположим, что усиление приемной антенны и ее входной комплексный импеданс на рабочей частоте равны соответственно $G_{RX} = 2$ и $Z_L = 11.9 + j133$ Ом (комплексно-сопряженная величина для емкостного импеданса чипа в его последовательном RC эквиваленте). Оценим действующее (RMS) напряжение V_{ACRMS} на нагрузке (на зажимах чипа) при условии, что излучатель (ридер) и приемная тэг антенна согласованы по поляризации. Приравнивая значение плотности потока мощности от излучателя с величиной эквивалентной изотропной излучающей мощности *EIRP*

$$\Pi = \frac{EIRP}{4\pi \cdot r^2},\tag{1}$$

с одной стороны, и плотность потока мощности, следующей из теоремы Умова-Пойнтинга,

$$\Pi = \frac{E^2}{2 \cdot Z_0},\tag{2}$$

с другой стороны, где $Z_0 = 120\pi$ Ом – волновое сопротивление свободного пространства, получим амплитудное значение напряженности электрического поля на расстоянии r от антенны:

$$E^{2} = \frac{EIRP \cdot Z_{0}}{2\pi \cdot r^{2}}$$
(3)

Выражая отсюда r и подставляя в формулу Фриса (Friis) (см., например, [8]), получаем

$$P_{RX} = \frac{G_{RX} \cdot E^2 \cdot \lambda^2}{8\pi \cdot Z_0} \tag{4}$$

Действующее напряжение на согласованной нагрузке антенны [9]:

$$V_{ACRMS} = |Z_L| \sqrt{\frac{P_{RX}}{R_L}} = \sqrt{R_L^2 + X_L^2} \sqrt{\frac{G_{RX}}{8\pi \cdot Z_0 \cdot R_L}} \cdot \lambda \cdot E \approx 0.18 \text{ B}, \tag{5}$$

что соответствует амплитудному значению напряжения $V=1.41V_{ACRMS} = 0.253$ В при указанных выше значениях $G_{RX} = 2$, E = 1 В/м, $\lambda \approx 0.320$ м, $R_L = 11.9$ Ом, $X_L = 133$ Ом.

Для численного решения задачи может быть использована та же модель и программа HFSS, что и для решения прямой задачи. Однако в данном случае в качестве источника надо задавать плоскую волну круговой поляризации, распространяющуюся в направлении –Z (см. рис. 1), что в рамках данной модели соответствует направлению от ридера к тэгу. На рис. 11 а представлена рассчитанная зависимость амплитуды напряженности поля поперек щели в месте включения чипа в тэг антенну в случае падения на нее LHCP волны, а на рис. 11 б показана та же

Рис. 11. Зависимость поля *E* (В/м) в щели от нормированного расстояния поперек щели при падении на тэг (а) LHCP и (б) RHCP волны

величина в случае падения RHCP волны. Амплитуда наводимого напряжения между краями щели (на зажимах чипа) при ширине щели 0.3 мм приближенно равна V_{LHCP} =0.285 В в случае LHCP и V_{RHCP} =0.034 В в случае RHCP. Отношение напряжений равно примерно V_{LHCP}/V_{RHCP} =8.4 или 18.50 дБ, что хорошо согласуется с величиной *PR*= 18.80 дБ на частоте 912 МГц на рис. 9, полученной из решения задачи излучения тэг антенны.

К тем же результатам можно придти по-другому. Определим величину PLF (Polarization Loss Factor) при падении на тэг волны круговой поляризации. По определению, PLF (по мощности) равна квадрату скалярного произведения двух единичных векторов: вектора поляризации падающей волны и вектора поляризации антенны [8, ф. (2.71)]. В данном случае вектор поляризации падающей волны, распространяющейся в направлении оси –Z (от ридера), имеет вид:

для LHCP падающей волны:

$$\overrightarrow{p_w} = \frac{\overrightarrow{a_\theta} + j \overrightarrow{a_\varphi}}{\sqrt{2}} , \qquad (6)$$

для RHCP падающей волны:

$$\overrightarrow{p_w} = \frac{\overrightarrow{a_\theta} - j \overrightarrow{a_\varphi}}{\sqrt{2}} , \qquad (7)$$

где $\vec{a_{\theta}}$, $\vec{a_{\varphi}}$ - единичные векторы в направлении осей θ , φ соответственно. Для данной тэг антенны вектор поляризации имеет вид:

$$\overrightarrow{p_{\alpha}} = \frac{\overrightarrow{a_{\theta}}E_{x0}\exp\left(-j\varphi_{x0}\right) + \overrightarrow{a_{\varphi}}E_{y0}\exp\left(-j\varphi_{y0}\right)}{\sqrt{E_{x0}^{2} + E_{y0}^{2}}}$$
(8)

Таким образом, PLF для LHCP падающей волны:

$$PLF_{LHCP} = |\overrightarrow{p_w}, \overrightarrow{p_a}|^2 = \frac{1}{2(E_{xo}^2 + E_{yo}^2)} \left| E_{x0} \exp(-j\varphi_{x0}) + jE_{y0} \exp(-j\varphi_{y0}) \right|^2, \tag{9}$$

PLF для RHCP падающей волны:

$$PLF_{RHCP} = |\overrightarrow{p_w}\overrightarrow{p_a}|^2 = \frac{1}{2(E_{x0}^2 + E_{y0}^2)} \left| E_{x0} \exp(-j\varphi_{x0}) - jE_{y0} \exp(-j\varphi_{y0}) \right|^2$$
(10)

Подставляя численные значения, получаем: $PLF_{LHCP} = 0.987 = -0.057 \ \partial E, PLF_{RHCP} = 0.013 = -18.851 \ \partial E.$ Итак, при падении на данный лево-поляризованный тэг волны с LHCP имеем почти полное поляризационное согласование, в то время как при падении волны с RHCP имеем около -19 дБ рассогласование. То есть волна ортогональной поляризации с противоположным направлением вращения почти не взаимодействует с данным тэгом, как и следовало ожидать. Разность двух значений PLF (9) и (10), очевидно, должна быть равна величине PR на рис. 9, полученной из решения прямой задачи, и близкой к ней величине PR, следующей из рис.11 а, б и полученной из решения обратной задачи. В самом деле: $PLF_{LHCP} - PLF_{RHCP} = -0.057 \ dB - (-18.851) \ dB = 18.79 \ dB.$ Это совпадение является дополнительным критерием правильности полученных результатов.

4. Падение плоской волны линейной поляризации на тэг антенну

В заключение кратко рассмотрим другой вариант RFID системы, в которой данная тэг антенна находится в поле линейно-поляризованной волны ридера, и определим PLF в зависимости от угла поворота тэга относительно направления поляризации падающей волны. Обозначим через α угол между направлением вектора поляризации падающей волны $\overrightarrow{p_w}$ и осью OY. В этом случае

$$\overrightarrow{p_w} = \overrightarrow{a_\theta} \sin \alpha + \overrightarrow{a_\varphi} \cos \alpha \tag{11}$$

$$PLF_{LP} = |\overrightarrow{p_w p_a}|^2 = \frac{1}{(E_{xo}^2 + E_{yo}^2)} \left| E_{x0} \sin \alpha \exp(-j\varphi_{x0}) + E_{y0} \cos \alpha \exp(-j\varphi_{y0}) \right|^2$$
(12)

Предположим, что α изменяется от 0 до 360⁰, что эквивалентно повороту тэга относительно линейно-поляризованной передающей антенны ридера на полный угол в полярной системе координат. На рис. 12 представлена зависимость *PLF_{LP}* в дБ от угла α .

Рис. 12. Зависимость PLF от угла наклона вектора поляризации в падающей линейнополяризованной волне по отношению к оси OY

Из этого графика видим, что максимальное значение PLF при падении на тэг линейнополяризованной плоской волны достигается при $\alpha=30^{0}$ и 210^{0} и равно 0.613 или -2.12 дБ. При этих углах α вектор поляризации в падающей волне направлен вдоль большой оси эллипса поляризации тэг антенны, которая, как было показано выше, наклонена на 30⁰ по отношению к оси ОҮ. Минимальное значение PLF достигается при α=120⁰ и 300⁰ и равно 0.387 или -4.12 дБ. При этих углах вектор поляризации в падающей волне направлен вдоль малой оси эллипса поляризации тэг антенны.

Таким образом, рис. 12 характеризует величину ориентационной чувствительности (огientation sensitivity [3]) для данного тэга, находящегося в поле линейно-поляризованной волны ридера: при его повороте на полный угол относительно ридера вариация напряжения на зажимах чипа составляет 2 дБ. Это, очевидно, равно величине AR для данной тэг антенны, которая была определена выше. Такая вариация мощности на зажимах чипа эквивалентна изменению расстояния чтения R_{min}/R_{max} =0.79. Таким образом, для уменьшения вариации расстояния чтения при произвольном расположении тэга относительно антенны ридера следует использовать ридер, излучающий LHCP волну (при этом, как показано выше, независимо от угла поворота тэга $PLF_{LHCF} = -0.057 \, \delta E$) и принимающий отклик тэга на ортогональной RHCP поляризации. Последнее связано с тем, что при отражении волны круговой поляризации от тэга направление вращения в отраженной волне изменяется на противоположное. Один из вариантов такой антенны с круговой поляризацией, имеющей разное направление вращения на передачу и на прием, предложен в [10]. В общем случае рекомендуемая конфигурация антенны ридера – это т.н. Bistatic Circular LHCP+RHCP (или RHCP+LHCP, если облучать тэг с обратной стороны) [11].

Заключение

В данной работе предложена тэг антенна с круговой поляризацией для применения в пассивной микроволновой RFID системе и описан метод расчета и проектирования ее характеристик с использованием коммерческой программы трехмерного электромагнитного моделирования. Конструкция тэга предложена исходя из физических представлений о механизмах формирования излучения круговой поляризации, а также из соображений простоты изготовления и низкой себестоимости. Представленные в работе характеристики показывают, что данная тэг антенна имеет эллиптическую поляризацию с AR меньше 2 дБ на центральной частоте и не более 3 дБ во всем рабочем диапазоне рассмотренной RFID системы. При этом обратные потери на согласование антенны с микрочипом в рабочем диапазоне не превышают -10 дБ.

В развитие этой работы можно ставить задачу проектирования тэга с меньшей эллиптичностью, а также увеличения полосы частот по критериям эллиптичности и согласования, что является актуальной проблемой для более широкополосных систем RFID.

Список литературы

1. *Finkenzeller K*. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. 2nd Edition: John Wiley and Sons, 2004.

2. Андренко А. С., Бабаскин А. А., Калиничев В. И., Курушин А. А. Согласование антенны тэга с микрочипом для систем радиочастотной идентификации // <u>http://jre.cplire.ru</u>, №12, 2007.

3. *Nikitin P. V. and Rao K. V. S.* Performance of RFID Tags with Multiple RF Ports // Proc. Int. Symp. IEEE AP. June 2007, Honolulu, HI, USA. PP. 5459-5462.

4. *Ramakrishnan K. N. M.* Performance Benchmarks for Passive UHF RFID Tags // Master's Thesis, Department of Electrical Engineering and Computer Science and the Faculty of Graduate School of the University of Kansas, October 17, 2005

http://www.ittc.ku.edu/research/thesis/documents/karthik_ramakrishnan_thesis.pdf 5. Radio frequency identification transponder employing patch antenna http://www.freepatentsonline.com/6215402.html

6. *Rossman, C. E., Lo Z.* Omnidirectional RFID Antenna // http://www.wipo.int/pctdb/fr/ia.jsp?IA=US2006039599&REF=RSS&DISPLAY=DESC 7. *Brady M. J., Duan D.-W., Kodukula V.S.R.* Radio frequency identification transponder having a spiral antenna // <u>http://www.patentstorm.us/patents/6118379-description.html</u>

8. Balanis K. Antenna Theory: Analysis and Design. 2nd Edition: John Wiley and Sons, 1997.
9. Wang G., Siden J., Jonsson P., Olsson T. RFID Antenna Investigation at ITM Department MID Sweden University// <u>http://www.me.se/fscn</u>, December, 2002.

10. Ortiz S. and Mortazawi A. A compact circularly polarized microstrip transmit-receive antenna for LAN applications // Proc. Int. Symp. IEEE AP. 21-26 June 1998, Vol. 4. PP. 2104-2107.

11. Drori R. RFID White Paper // http://www.mtiwe.com/page.aspx?parent=23&id=283&type=2