"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 3, 2017

contents             full textpdf   

Optimization of manufacturing of field-effect transistors constituent DRAM elements in order to increase their density


E. L. Pankratov1,2, E. A. Bulaeva1

1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod 603950, Russia

2 Volgo-Vyatka Branch Moscow Technical University of Communication and Informatics (MTUSI), 15 Mendeleev str, Nizhny Novgorod 603011, Russia


The paper is received on January 25, 2017


Abstract. In this paper we consider an approach to increase density of field-effect transistors framework elements of DRAM and at the same time to decrease their dimensions. In the framework of this approach it is necessary to dope required areas of heterostructure with specific configuration by diffusion or ion implantation and to optimize annealing of dopant and/or radiation defects (after ion implantation). Analysis of redistribution of dopant with account of redistribution of radiation defects for optimization of annealing of dopant and /or radiation defects has been done by using recently introduced analytical approach. The approach gives a possibility to analyze mass and heat transports in a heterostructure without crosslinking of solutions on interfaces between layers of the heterostructure with account to nonlinearity of these transports and variation in time of their parameters.

Keywords: field-effect heterotransistors, DRAM elements, optimization of manufacturing, increasing of density of heterotransistors.


[1] Volovich G. Modern chips UM3Ch class D manufactured by firm MPS.  Sovremennaya elektronika - Modern Electronics, 2006. 2, pp. 10-17. (In Russian)

[2] Kerentsev A., Lanin V. Constructive-technological features of MOSFET-transistors.  Silovaya elektronika - Power Electronics, 2008, 1, pp. 34-38. (In  Russian)

[3] Ageev A.O., Belyaev A.E., Boltovets N.S., Ivanov V.N., Konakova R.V., Kudrik Ya.Ya., Litvin P.M., Milenin V.V., Sachenko A.V. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts.  Semiconductors, 2009, Vol. 43, 7, pp. 865-871.

[4] Volokobinskaya N.I., Komarov I.N., Matioukhina T.V., Rechetnikov V.I., Rush A.A., Falina I.V., Yastrebov A.S. A study of technological processes in the production of high-power high-voltage bipolar transistors incorporating an array of inclusions in the collector region.  Semiconductors. 2001, Vol. 35, 8, pp. 974-978.

[5] Gaska R., Gaevski M., Jain R., Deng J., Islam M., Simin G., Shur M. Novel AlInN/GaN integrated circuits operating up to 500C.  Solid-State Electronics, 2015, Vol. 113, pp. 22-27.

[6] Ong K.K., Pey K.L., Lee P.S., Wee A.T.S., Wang X.C., Chong Y.F. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing.  Appl. Phys. Lett, 2006, Vol. 89, 17, pp. 172111-172114.

[7] Wang H.T., Tan L.S., Chor E.F. Pulsed laser annealing of Be-implanted GaN.  J. Appl. Phys., 2006, Vol. 98, 9, pp. 094901-094905.

[8] Bykov Yu.V., Yeremeev A.G., Zharova N.A., Plotnikov I.V., Rybakov K.I., Drozdov M.N., Drozdov Yu.N., Skupov V.D. Diffusion processes in semiconductor structures during microwave annealing.  Izvestiya vuzov (Rdiofizik) - Proceedings os High Education Schools (Radio Physics and Quantum Electronics series), 2003, Vol. 43, 3. P. 836-843. (In Russian)

[9] Kozlovsky V.V. Modifikatsiya poluprovodniov puchkami protonov. [Modification of semiconductors by proton beams]. Sant- Peterburg, Nauka Publ., 2003. (In Russian).

[10] Vinetskiy V.L., Kholodar' G.A. Radiotsionnaya fizika poluprovodnikov. [Radiative physics of semiconductors]. Kiev, Naukova Dumka Publ., 1979. (In Russian).

[11] Gotra Z.Yu. Tekhnologiya mikroellektronnykh ustroistv. [Technology of microelectronic devices]. Moscow, Radio and communication Publ., 1991. (In Russian).

[12] Fahey P.M., Griffin P.B., Plummer J.D. Point defects and dopant diffusion in silicon.  Rev. Mod. Phys., 1989, Vol. 61, 2, pp 289-388.

[13] Sokolov Yu.D. About the definition of dynamic forces in the mine lifting. Prikladnava mekhanika - Applied Mechanics, 1955, Vol.1, 1, pp. 23-35 (1955). (In Russian)

[14] Pankratov E.L. Dynamics of delta-dopant redistribution during heterostructure growth.  The Eur. Phys. J. B., 2007, Vol. 57, 3, pp. 251-256.

[15] Pankratov E.L. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity.  Russian Microelectronics, 2007, Vol. 36, 1, pp. 33-39 2007.

[16] Pankratov E.L. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers.  Int. J. Nanoscience, 2008, Vol. 7, 4-5, pp. 187-197.

[17] Pankratov E.L. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing.  J. Comp. Theor. Nanoscience, 2010, Vol. 7, 1, p. 289-295.

[18] Pankratov E.L., Bulaeva E.A. Application of native inhomogeneities to increase compactness of vertical field-effect transistors.  J. Comp. Theor. Nanoscience, 2013, Vol. 10, 4, pp. 888-893.

[19] Pankratov E.L., Bulaeva E.A. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization.  Int. J. Micro-Nano Scale Transp., 2014, Vol. 4, 1, pp. 17-31.

[20] Pankratov E.L., Bulaeva E.A. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing.  Int. J. Nanoscience, 2012, Vol. 11, 5, pp. 1250028-1250035.


For citation:

E. L. Pankratov, E. A. Bulaeva. Optimization of manufacturing of field-effect transistors constituent DRAM elements in order to increase their density. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 3. Available at http://jre.cplire.ru/jre/mar17/3/text.pdf. (In Russian)