1. Alexeev V.F., Juravlev V.I.
Thermal models
of failures of semiconductor structures under the influence of powerful
electromagnetic pulses. Doklady BGUIR-Reports of BSUIR 2005. No. 2. pp. 65-72. (In Russian)
2. Wunsh D.C., Bell R.R.
Determination of threshold failure levels of semiconductor diodes and
transistors due to pulse voltage.
IEEE Transaction on Nuclear Science. 1968.
Vol. NS-15. No. 6. P. 244-259.
3. Dwyer V.M., Franklin
A.J., Campbell D.S. Thermal failure in semiconductor devices. Solid-State
Electronics. 1990. Vol.33. No. 5. P. 553-560.
4. Dobykin V.D. Development of the theory of thermal damage of semiconductor structures by powerful electromagnetic radiation. Journal of
Communications Technology and Electronics, 2008, Vol. 53. No. 1, P.
100-103. DOI:
10.1134/S1064226908010129
5. Kravchenko V.I., Serkov.
A.A., Breslavets V.S., e.t.c. Modeling of physical mechanisms of occurrence of irreversible
failures of semiconductor devices in conditions of electromagnetic influence.
Vestnik NTU "KhPI"
- Bulletin of NTU "KhPI" [Vestnik NTU "KhPI"
], 2015, No. 51.
P. 56- 59. (In Russian)
6. Hiroyuki Shibata,
Yoshio Waseda, Hiromichi Ohta at.al. High thermal conductivity of gallium
nitride (GaN) crystals grows by HVPE process. Materials Transactions. 2007.
V.48. N10. P. 2782-2786.
7. NSM Archive Physical
Properties of Semiconductors. Available at:
http://www.ioffe.ru/SVA/NSM/.
8. Sergeev V.A., Hodakov A.M.
Thermoelectric
models of powerful bipolar semiconductor devices. Part II. Nonlinear heat-electric
model of high-power light-emitting diodes. Journal of
Communications Technology and Electronics, 2015, Vol. 60, No.12, pp.
1328-1332. DOI:
10.1134/S1064226915080161
9. Sergeev V.A., Hodakov A.M.
Nelineynye teplovye modeli poluprovodnikovyh ustristv [Nonlinear
thermal models of semiconductor devices] Ulyanovsk: UlSTU pulbl, 2012, (In Russian).
10. Bin
Du, Hudgins J.L. Santi E. at al. Transient Electrothermal Simulation of Power
Semiconductor Devices. IEEE Transactions on power electronics. 2010. V. 25. N1.
P. 237-248.
11. T.K. Gachovska, B. Du, J.L. Hudgins, E. Santi. Transient
Electro-Thermal Modeling of Bipolar Power Semiconductor Devices. Morgan & Claypool: San Rafael, 2013.
12.
Shan O., Dai Q., Chhajed S. Analysis of thermal properties of GaInN
light-emitting diodes and laser diodes. Journal of applied physics. 2010. N108.
P. 30-38.
13. Lee, S. Spreading
Resistance Model for Electronic packaging / S. Lee, S. Song ,V. Au. Proceedings of ASME/JSME Thermal Engineering Conference. 1995. V. 4. P. 199
14. Light-Emitting
Diodes. E. Fred Schubert, Cambridge University Press, 2006.
15. Sergeev V.A., Hodakov A.M.,
Molgatchev A.A. Modeling
the thermal damage of a microwave diode with a powerful pulse of
electromagnetic radiation. Izvestija vusov. Electronica - Proceedings of universities.
Electronics.
2016. Vol. 21. No.3. P. 289–292. (In Russian)
16. Sergeev V.A., Hodakov A.M Modeling of non-stationary thermoelectric
processes in the structure of a high-power LED. Izvestija vusov. Electronica -
Proceedings of universities.
Electronics.
2011. ¹6. Ñòð. 80–82. (In Russian)
17. Johnston,
A. H. Proton Degradation of Light-Emitting Diodes / A. H. Johnston, B. G. Rax, L.
E. Selva and C. E. Barnes. IEEE Transactions on Nuclear Science. 1999. V. 46.
P. 1781.
18. Arlight LEDs.
Available at:
http://www.arlight.ru/catalog/svetodiody-100001/ .
19. Shun-Lien Chuang, Akira Ishibashi, Satoru Kijima et al. Kinetic model for degradation of
light-emitting diode. IEEE Journal of Quantum
Electronics. 1997 V. 33. N6. P.970-979 .
20. Taska
D.M. Pulse power failure modes in semiconductors. IEEE Transaction on Nuclear
Science. 1970. V. NS-17. N 7. P. 364-372.
For citation:
A.M.
Hodakov, V.A. Sergeev, A. A. Gavrikov.Thermoelectric processes in heterojunction LED under the influence of powerful microwave electromagnetic radiation.
Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 3. Available at http://jre.cplire.ru/jre/mar17/6/text.pdf. (In Russian)