"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 3, 2019

contents of issue      DOI  10.30898/1684-1719.2019.3.10     full text in Russian (pdf)  

UDC 576:532.59

Microwave irradiation modifies the ultraweak luminescence of cell life products

 

K. D. Kazarinov, A. V. Chekanov

Fryasino branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq., 1, Fryazino, Moscow region, 141190 Russia

 

 The paper is received on March 4, 2019

 

Abstract. The registration of ultraweak luminescence method is used to control a variety of different objects in studying the biological effects of microwave radiation on a number of systems. This method appears to be highly promising for the analysis of lipid peroxidation (LPO) and in other reactions involving reactive oxygen species (ROS). It was discovered that EHF irradiation under different ways initiation, causes acceleration of LPO. It is necessary to note that an enhanced content of LPO products in the samples after EHF irradiation was  observed at intensities not exceeding 1 mW/cm2. The mechanism of the observable effect may be connected with the acceleration of accession of oxygen from air to the suspension. Ex vivo studies of blood cell in whole blood samples is the best way to model the in vivo situation in blood. Our study demonstrates that MMW radiation did not affect blood cells and platelets in untreated blood but increased substantially the response of neutrophils in blood treated with particulate agonists – opsonized zymosan (OZ ) or bacteria E. coli. Microwave heating of blood appears to be the dominant mechanism in enhancing the reaction of neutrophils, together with the response of LPO of skin cell membranes to agonists under chosen experimental conditions (ÅHF EMR-induced oxidative stress). Heating of the tissues occurs at shallow depths. The temperature increases slowly and varies only slightly. This property of microwave radiation suggests the possibility of using it for targeted local therapy with minimal side effects and damage to surrounding tissues. For example, using EHF EMR for targeted regulation of local inflammatory processes in small areas of the skin without damaging healthy tissue. MMW irradiation of infected area can promote the activation of neutrophils in the wound resulting in the local potentiation of neutrophil antimicrobial activity. On the other hand, our results show the necessity of gentle employment of EHF EMR for therapy in patients with infection diseases.

Key words: extremely high frequencies (EHF), lipid peroxidation (LPO), reactive oxygen species (ROS), ultraweak luminescence, skin cell membranes, luminol-dependent chemiluminescence (CL), heating effect.

References

  1. Godik E.E., Gulyaev Yu.V. Functional imaging of the human body.  IEEE Engineering in Medicine and Biology Magazine. 1991. Vol. 10, No. 4, PP. 21-29.

  2. E.E., Gulyayev Yu.V. Physical fields of humans and animals. V mire nauki –Sientific American, 1990, No 5, pp. 75-83. (In Russian)

  3. Gulyayev Yu.V., Godik E.E.  In the book Kibernetika zhivogo: Biologiya i informatsiya. [Cybernetics of the Living: Biology and Information]. Moscow. Nauka. Publ. 1984. 111-116. p. (In Russian)

  4. Jiang X., Clark R. A., Liu L., Wagers A. J., Fuhlbrigge R. C., Kupper T. S. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature2012, Vol. 483, pp. 227-31. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437663/.
    DOI: 10.1038/nature10851

  5. Vladimirov Yu.A., Sherstnev M.P. Chemiluminescence of animal cells. Itogi nauki i tekhniki. Biofizika. - Results of science and technology. Biophysics,1989, Vol. 24, pp. 171. (In Russian)

  6. Colli L. Facchini, U. Guidotti, G. Lonati, R.D. Arsenigo, M. Sommariva, O. Further measurements on the bioluminescence of the seedlings, Experientia, 1955, Vol. 11, pp. 479-481. Available at https://link.springer.com/article/10.1007%2FBF02166829

  7. Vladimirov Yu.A. , Lytvyn F.F. The study of super-weak glows in biological systems. Biofizika – Biophysics, 1959. Vol. 4, No 5, pp. 601-605. (In Russian)

  8. Vladimirov YU.A. Sverkhslabyye svecheniya pri biokhimicheskikh reaktsiyakh. [Superweak luminescence during biochemical reactions]. Moscow. Nauka. Publ. 1966. 126. p. (In Russian)

  9. Vladimirov Yu.A., Archakov A.I. Perekisnoye okisleniye lipidov v biologicheskikh membranakh. [Lipid peroxidation in biological membranes]. Moscow. Nauka. Publ. 1972. 252. p. (In Russian)

  10. Tarusov B.N. Polivoda A.I. Zhuravlev A.I. The study of super-weak spontaneous luminescence of animal cells. Biofizika – Biophysics, 1961, Vol. 6, No. 5, pp. 490-492. (In Russian)

  11. Hasanov R.A., Mamedov T.G., Tarusov B.N. Spontaneous and induced biochemiluminescence of plants under aerobic and anaerobic conditions. Doklady AN SSSR – Doklady Biochemistry and Biophysics, 1963, Vol. 150, No. 4. pp. 913-915. (In Russian)

  12. Vladimirov, Y.A. Intrinsic (low-level) chemiluminescence, in Free radicals. A practical approach, N.A. Punchard, F. J. Kelly,  Editors. 1996, Oxford University Press: Oxford, New York, Tokyo.  pp. 65-82.

  13. Vladimirov Yu.A. Light emission accompanying biochemical reactions. Sorosovskiy obrazovatel'nyy zhurnal  – Soros Educational Journal, 1999, Vol. 5, No 6, pp. 25-32. Available at https://elibrary.ru/item.asp?id=25974839   (In Russian)

  14. Malinin V.S., Kazarinov K.D., Putvinskii A.V. Machanism of activation of neutrophils of human blood by electric field pulse. Biofizika – Biophysics, 1996, Vol. 4, No 4, pp. 876-886. (In Russian)

  15. Chekanov A.V., Panasenko O.M., Osipov A.N., Matveeva N.S., Kazarinov K.D., Vladimirov Iu.A., Sergienko V.I. The interaction of hypochlorite with fatty acid hydroperoxides results in the generation of free radicals. Biofizika – Biophysics, 2005, Vol. 50, No 1, pp. 13-19. (In Russian)

  16. Magin D.V. Izmailov D.Yu. Popov I. Levin G. Vladimirov Yu.A. Photochemiluminescence as a tool to determine the antioxidant activity in biological systems. mathematic modeling. Voprosy meditsinskoy khimii - Questions of medical chemistry, 2000, Vol. 46, No 4. pp. 61-66. Available at http://flatik.ru/fotohemilyuminescenciya-kak-metod-izucheniya-antioksidantnoj-a  (In Russian)

  17. Vladimirov Y.A., Proskurnina E.V., Izmajlov D.Y. Kinetic chemiluminescence as a method for study of free radical reactions. Biofizika – Biophysics, 2011, Vol. 56, No 6, pp. 1081-1090. (In Russian) DOI: 10.1134/S0006350911060200          

  18. Sharov V.S., Vladimirov Yu.A. Chemiluminescence of liposomes activated by rare earth ions. Biofizika – Biophysics, 1982, Vol. 27, No 2, pp. 327-329. (In Russian)

  19. Sharov V.S., Suslova T.B., Vladimirov Yu. A. Study of the contribution of lipid and water radicals to chemiluminescence during lipid peroxidation using rare-earth activators. Tezisy dokladov I Vsesoyuznogo biofizicheskogo s"yezda - Abstracts of the I All-Union Biophysical Congress. Moscow State University. Publ. 1982. Vol. 3.  161-162. pp. (In Russian)

  20. Sharov V.S., Driomina E.S., Putvinsky A.V., Vladimirov Yu.A. Intrinsic and enhanced chemiluminescence accompanying lipid peroxidation. Journal of Bioluminescence and Chemiluminescence. 1991, Vol. 6, No 4, pp. 282.

  21. Lebedeva O.V. Ugarova N.N. Chemiluminescent determination of glucose in serum. Zhurnal analiticheskoy khimii  – Journal of analytical chemistry, 1995, Vol. 50, No 10, pp. 1110-1113. (In Russian)

  22. Safronova AB, Gapeev AB, Alovskaya A.A., Gabdulkhakova A.G., Chemeris N.K., Fesenko E.E. Millimeter waves inhibit the synergistic effect of calcium ionophore A23187 and phorbol ester in the activation of neutrophil respiratory blast. Biofizika – Biophysics, 1997, Vol. 42, No 6, pp. 1267-1273. (In Russian)

  23. Mudrik DG, Golant MB, Izvolskaya V.E. et al. Doklady 10-go rossiyskogo simpoziuma Millimetrovyye volny v meditsine i biologii. [Reports of the 10th Russian symposium Millimeter waves in medicine and biology]. Moscow, IRE RAS.  Publ. 1995. pp. 109-111 (In Russian)

  24. Gapeev AB, Chemeris N.K. The effect of continuous and modulated EHF EMI on animal cells. Vestnik novykh meditsinskikh tekhnologiy – Bulletin of new medical technologies, 2000, Vol. 6, No 1, pp. 20-25. (In Russian)

  25. Gapeev AB, Yakushin VS, Chemeris N.K., Fesenko E.E. The dependence of the effects of EMR UHF on the value of a constant magnetic field.  Doklady akademii nauk - Doklady Biochemistry and Biophysics, 1999. Vol. 369, No. 3, pp. 404-407. (In Russian)

  26. Potseluyeva M.M., Pustovidko A.V., Yevtodiyenko YU.V., Khramov R.N., Chaylakhyan L.M. The formation of reactive forms of oxygen in aqueous solutions under the action of electromagnetic radiation of the EHF-range. Doklady akademii nauk - Doklady Biochemistry and Biophysics, 1998, Vol. 359, No. 3, pp. 415-418. (In Russian)

  27. Potseluyeva M.M., Chukhlova E.A., Medvedev B.I., Yevtodiyenko YU.V. Conditions for optimal production of reactive oxygen species by rat polymorphonuclear leukocytes. Biofizika – Biophysics, 1997, Vol. 40, No 6, pp. 1267-1273. (In Russian)

  28. Khizhnjak E.P., Ziskin C. Temperature oscillation in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics, 1996, Vol. 17, pp. 223-229. DOI: 10.1002/(SICI)1521-186X(1996)17:3<223::AID-BEM8>3.0.CO;2-5.

  29. Kazarinov K.D., Putvinsky A.V., Malinin V.S. Interface Convection in Water as a Primary Mechanism of Extra High Frequency Irradiation. In: Electricity and magnetism in Biology and Medicine. Plenum publishing corporation. Publ. N.Y., 1999. 441-444. p.

  30. Marinov B.S., Chaylakhyan L.M. Regulation of superoxide dismutase activity by microwave radiation. The mechanism of action of the microwave. Doklady akademii nauk - Reports of the Academy of Sciences, 1997, Vol. 357, No. 6, pp. 821-824. (In Russian)

  31. Vaks V.L., Domrachev G.A., Rodygin YU.L., Selivanovskiy D.A., Spivak Ye.I. The dissociation of water under the action of microwave radiation. Izlucheniya. Izvestiya Vuzov. Radiofizika - University news. Radio Physics, 1994, Vol. 37, No. 1, pp. 149-154. (In Russian)

  32. Sharov V.S. Kazarinov K.D. Andreev V.E. Putvinsky A.V. Betsky OV Acceleration of lipid peroxidation under the influence of millimeter-wave electromagnetic radiation. Biofizika – Biophysics, 1983, Vol. 23, No 1, pp. 146-147. (In Russian)

  33. Kazamanov V.A. Sharov V.S. Putvinsky A.V. Kazarinov K.D. Chemiluminometer. Pribory i tekhnika eksperimenta – Instruments and experimental techniques, 1989, No 1, pp. 243-244. (In Russian)

  34. Petrenko Yu.M., Roshchupkin D.I., Vladimirov Yu.A. Kinetics of the interaction of ferrous iron with oxidized lipids and the possibility of chemiluminescent determination of hydroperoxides. Biofizika – Biophysics, 1975, Vol. 20, No 4, pp. 608-611. (In Russian)

  35. Kazarinov K.D., Polnikov I.G. Study of the biological effects of microwave radiation using the chemiluminescent method. Elektronnaya tekhnika. Ser.1. SVCH-tekhnika – Electronic Engineering. Ser.1. Microwave Engineering, 2010, No 2, pp. 57-71. (In Russian)

  36. Vlasova I.I., Mikhalchik E.V., Gusev A.A., Balabushevich N.G., Gusev S.A., and Kazarinov K.D..  Extremely high frequency electromagnetic radiation promotes neutrophil antimicrobial activity. Bioelectromagnetics. February 2018. V. 39, Is. 2. Š. 144-155.  DOI: 10.1002/bem.22103

  37. Szabo I., Rojavin M.A., Rogers T.J., Ziskin M.C. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics, 2001, Vol 22, No 5,  pp. 358-364. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.62. DOI: https://doi.org/10.1002/bem.62.

  38. Alekseev S.I., Ziskin M.C. Enhanced absorption of millimeter wave energy in murine subcutaneous blood vessels.  Bioelectromagnetics, 2011, Vol 32, No 6, pp. 423–433. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118398/   doi: 10.1002/bem.20658

  39. Gapeyev A.B., Safronova V.G., Chemeris N.K., Fesenko E.E. Inhibition of the production of reactive oxygen species in mouse peritoneal neutrophils by millimeter wave radiation in the near and far field zones of the radiator. Bioelectrochemistry Bioenergetics, 1997, Vol. 43, No 2, pp. 217–220. Available at https://www.sciencedirect.com/science/article/pii/S0302459896051550. DOI: https://doi.org/10.1016/S0302-4598(96)05155-0.

  40. Safronova V.G., Gabdoulkhakova A.G., Santalov B.F. Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics, 2002, Vol. 23, No 8, pp. 599- 606. Available at https://onlinelibrary.wiley.com/doi/pdf/10.1002/bem.10056. DOI: 10.1002/bem.10056.

  41. Poniedzialek B., Rzymski P., Nawrocka-Bogusz H., Jaroszyk F., Wiktorowicz K. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro. Electromagnetic Biology and Medicine, 2013, Vol. 32, No 3, pp. 333–341. doi: 10.3109/15368378.2012.721845.

  42. Alekseev S.I., Ziskin M.C. Local heating of human skin by millimeter waves: A kinetics study. Bioelectromagnetics, 2003, Vol. 24, No 8, pp. 571–581.

  43. Ziskin M.C. Millimeter Waves: Acoustic and Electromagnetic. Bioelectromagnetics. 2013, Vol. 34, No 1, pp. 3–14. Available at https://onlinelibrary.wiley.com/doi/pdf/10.1002/bem.10137. DOI: https://doi.org/10.1002/bem.10137.

  44. Tuschl H., Novak W., Molla-Djafari H. In vitro effects of GSM modulated radiofrequency fields on human immune cells. Bioelectromagnetics, 2006, Vol. 27, No 3, pp. 188–196. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.20191. DOI: 10.1002/bem.20191.

  45. Lantow M., Lupke M., Frahm J., Mattsson M.O., Kuster N., Simko M. ROS release and Hsp70 expression after exposure to 1,800MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiation Environmental Biophysics. 2006, Vol. 45, No 1, pp.55–62. Available at https://link.springer.com/article/10.1007%2Fs00411-006-0038-3. DOI: 10.1007/s00411-006-0038-3.

  46. Stankiewicz W., Dabrowski M.P., Kubacki R., Sobiczewska E., Szmigielski S. Immunotropic influence of 900MHz microwave GSM signal on human blood immune cells activated in vitro. Electromagnetic Biology and Medicine. 2006, Vol. 25, No 1, pp. 45–51. DOI: 10.1080/15368370600572961.

  47. Sypniewska R.K., Millenbaugh N.J., Kiel J.L., Blystone R.V., Ringham H.N., Mason P.A., Witzmann F.A. Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves. Bioelectromagnetics. 2010, Vol. 31, No 8, pp. 656-663. DOI: 10.1002/bem.20598.

For citation:

K.D. Kazarinov, A.V. Chekanov. Microwave irradiation modifies the ultraweak luminescence of cell life products. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 3. Available at http://jre.cplire.ru/jre/mar19/10/text.pdf

DOI  10.30898/1684-1719.2019.3.10