Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 3
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.3.6

UDC 537.8

 

Optical fiber piezoelectroluminescent sensor for measuring gradient deformation of plates

 

A. A. Pankov

Perm National Research Polytechnic UniversityKomsomolsky ave.,29, Perm, 614990 Russia

 

 The paper was received on March 18, 2021

 

Abstract. Mechanic-mathematical models of surface fiber optic piezoelectroluminescent (PEL) sensors installed on the surface of polymer composite structures, in particular, plates (shells) for refined monitoring of inhomogeneous "gradient" deformation fields inside structures, have been developed. There are given problem statements and problem solving algorithms for representative domain of "plate/sensor" system in order to find numerical values of control and informative, including transfer "gradient" coefficients of PEL-sensors. Results of numerical calculation of control and informative transfer coefficients of surface PEL-sensor for case of small values of gradients of diagnosed membrane, bending and torsional deformations of transversal-isotropic elastic plate are presented.

Key words: piezo-electro-elasticity, mechanical-luminescent effect, optical fiber, surface sensor, composite plate, numerical modeling.

References

1.     Danilin A.I., Zhukov S.V. Optoelectronic systems for determining the deformation state of the helicopter rotor. Izvestiya Samarskogo nauchnogo centra Rossiiskoi akademii nauk [Izvestia of the Samara Scientific Center of the Russian Academy of Sciences]. 2016. No.4-6. P 1307-1314. (In Russian)

2.     Anoshkin A.N., Zuiko V.Yu., Pelenev K.A., Pisarev P.V., Shipunov G.S. Numerical modeling of the stress-strain state of the composite frame for aviation purposes to develop a control technique using fiber-optic sensors. PNRPU Mechanics Bulletin. 2018. No 4. P 47-57. (In Russian)

3.     Warden K. New intellectual materials and designs. Moscow: Technosphere, 2006. 223 p. (In Russian)

4.     Fedotov M.Yu., Sorokin K.V., Goncharov V.A., Shienok A.M., Zelensky P.V. Capabilities of sensor systems and intelligent PCMs based on them. Vse materiali. Enciklopedicheskii spravochnik [All materials. Encyclopedic Handbook]. 2013. No.2. P. 8-23. (In Russian)

5.     Sorokin K.V., Murashov V.V. World trends in the development of distributed fiber-optic sensor systems (Overview). Aviacionnie materiali i tehnologii [Aviation materials and technologies]. 2015. No.3. P.90-94. (In Russian)

6.     Lutsenko A.N., Odintsev I.N., Grinevich A.V., Severov P.B., Plugatar P. Study of the material deformation process by optical correlation methods. Aviacionnie materiali i tehnologii [Aviation materials and technologies]. 2014. No.S4. P.70-86. (In Russian)

7.     Mineev S.A., Ugolnikov A.Yu., Lozovskaya L.B. Analysis of speckle images of a deformable surface based on optical flux processing algorithms. Vestnik Nijegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of Nizhny Novgorod Lobachevsky University]. 2014. No.2(1). P.81-86. (In Russian)

8.     Ilichev A.V., Gubin A.M., Akmeev A.R., Ivanov N.V. Determination of the region of maximum shear deformations for carbon plastics samples according to the Josipescu method, using an optical measurement system. Trudi VIAM [VIAM Proceedings]. 2018. No.6. P.99-109. (In Russian)

9.     Nadezhdin K.D., Zolenin L.M., Kirpichnikov A.P. Visual methods for determining deformations and stresses on the surface of the tested structures. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University]. 2016. No.12. P.143-146. (In Russian)

10.  Ilichev A.V., Raskutin A.E. Study of the influence of a stress concentrator on the stress-strain state of carbon plastics by the method of correlation of digital images. Aviacionnie materiali i tehnologii [Aviation materials and technologies]. 2014. No.3(32). P.62-66. (In Russian)

11.    Semenova O.V., Morozov O.A. Method of precision refinement of fields of inhomogeneous displacements and deformations on the surface of materials. Fizicheskaya mezomehanika [Physical mesomechanics]. 2003. No.3. P.99-105. (In Russian)

12.     Lyubutin P.S., Panin S.V., Titkov V.V., Eremin A.V., Sunder R. Development of the method of correlation of digital images for studying the processes of deformation and destruction of structural materials. PNRPU Mechanics Bulletin. 2019. No.1. P.87-107. (In Russian)

13.    Staroverov O.A., Strungar E.M., Tretyakov M.P., Tretyakova T.V. Features of experimental studies of tubular samples of composite materials in difficult stress conditions. Vestnik Permskogo nacionalnogo issledovatelskogo politehnicheskogo universiteta. Aerokosmicheskaya tehnika [Bulletin of Perm National Research Polytechnic University. Aerospace technology]. 2017. No.51. P.104-114. (In Russian)

14.    Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Fiber-optic sensors for monitoring corrosion processes in aviation equipment nodes (overview ). Aviacionnie materiali i tehnologii [Aviation materials and technologies]. 2017. No.3. P.26-34. (In Russian)

15.    Ruzakov I.A. Monitoring of deformation state of structural elements from PCM based on fiber optic sensors (overview ). Trudi VIAM [VIAM Proceedings]. 2019. No.4. P.88-98. (In Russian)

16.    Kachura S.M., Postnov V.I. Promising fiber optic sensors and their application (overview ). Trudi VIAM [VIAM Proceedings]. 2019. No.5. P.52-61. (In Russian)

17.    Serinov A.N., Kuznetsov A.B., Lukyanov A.V., Bragin A.A. Application of fiber-optic technologies in the creation of built-in self-diagnostics systems of aviation structures. Nauchnii vestnik NGTU. Aviacionnaya i raketno_kosmicheskaya tehnika [Scientific Bulletin of NSTU. Aviation and rocket and space technology]. 2016. No.3. P 95-105. (In Russian)

18.    Budadin O.N., Paper bags A.A., Kutyurin V.Yu. Fiber-optic sensors with Bragg grilles for monitoring the stressed-deformed state of products from composite materials. Konstrukcii iz kompozicionnih materialov [Structures from composite materials]. 2018. No.2. P.60-67. (In Russian)

19.    Munko A.S., Varzhel S.V., Arkhipov S.V., Konnov K.A., Petrov A.B. Development of a sensitive element of a fiber-optic strain gauge based on Bragg arrays. Izvestiya visshih uchebnih zavedenii. Priborostroenie. [News of higher educational institutions. Instrument making]. 2017. No.4. P.340-346. (In Russian)

20.    Liu Y., Lacher A., Wang G., Purekar A., Yu M. Wireless fiber optic sensor system for strain and pressure measurements on a rotor blade. Proceedings of SPIE - The International Society for Optical Engineering. 2007. No. 67700Y.

21. Patent US 20060254366 A1. Sensor and sensor array for monitoring a structure. Caroline Williamson, Lisa Fixter (nee Humberstone), Andrew Clark. Published on November 16, 2006.

22. Patent US 7458266 B2. Method and apparatus for detecting a load change upon a structure and analyzing characteristics of resulting damage. Shawn J. Beard, Xinlin Qing, Hian Leng Chan, Chang Zhang, Fuo-Kuo Chang. Published on December 2, 2008.

23. Patent US 6399939 B1. Sensor array system. Mannur J. Sundaresan, Anindya Ghoshal, Mark J. Schulz. Published on June 4, 2002.

24.    Patent RU No. 2643692. Fiber-Optic Volumetric Stress Sensor. Pankov A.A. Published 05.02.2018, Bul.  4. Application  2017111405 dated 4.04.2017.

25.    Pankov A.A. A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures. Mechanics of Composite Materials. 2018. 2. P.155-164.

26.    Pankov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields. Sensors and Actuators A: Phys. 2019. Vol.288. P.171-176.

27.    Sessler G.M. Piezoelectricity in polyvinylidenefluoride. J. Acoust. Soc. Amer., 1981. No.6. P.1596-1608.

 

For citation:

Pankov A.A. Optical fiber piezoelectroluminescent sensor for measuring gradient deformation of plates. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.3. https://doi.org/10.30898/1684-1719.2021.3.6 (In Russian)