DOI: https://doi.org/10.30898/1684-1719.2022.3.2 УДК: 621.396.67

ШИРОКОУГОЛЬНЫЕ МНОГОЛУЧЕВЫЕ АНТЕННЫ НА ОСНОВЕ БИФОКАЛЬНЫХ СИСТЕМ.

В.А. Калошин¹, Ви Ут Нам²

¹Институт радиотехники и электроники им. В.А. Котельникова РАН 125007, г. Москва, ул. Моховая, д. 11, стр. 7 ²Московский физико-технический институт (НИУ), 141700, Московская обл., г. Долгопрудный, Институтский пер. 9

Статья поступила в редакцию 19 февраля 2022 г.

Аннотация. С использованием численного моделирования методом конечных Кирхгофа приближении исследованы элементов И В характеристики многолучевых антенн с широким углом обзора на основе планарных бифокальных двухзеркальных, зеркально-линзовых и линзовых систем с оптимизированными параметрами. В приближении Кирхгофа рассчитаны характеристики многолучевой антенны на основе трехмерной диэлектрической бифокальной линзы. Проведены измерения зависимости коэффициента усиления от угла обзора макета многолучевой антенны на основе планарной бифокальной диэлектрической линзы.

Ключевые слова: многолучевая антенна, двухзеркальная бифокальная система, зеркально-линзовая бифокальная система, линзовая бифокальная система.

Abstract. The characteristics of multi-beam antennas with a wide angle of view based on planar bifocal two-mirror, mirror-lens and lens systems with optimized parameters are studied using numerical simulation by the finite element method and in the Kirchhoff approximation. The characteristics of a multi-beam antenna based on a threedimensional dielectric bifocal lens are calculated in the Kirchhoff approximation. The

dependence of the gain on the angle of view of a multi-beam antenna prototype based on a planar bifocal dielectric lens has been measured

Keywords: multi-beam antenna, two-mirror bifocal system, reflex-lens bifocal system, lens bifocal system.

Введение

Резкое возрастание интереса к исследованиям многолучевых антенн на основе линзовых и зеркальных систем [1-17] в последнее время связано, прежде всего, с развитием мобильной и космической связи. При этом наибольший трехмерный сектор обзора и высокий коэффициент усиления (КУ) обеспечивают многолучевые антенны на основе сферической линзы Люнебурга [10, 11], а двумерный сектор – на основе цилиндрической линзы Люнебурга [12] и геодезической линзы [13]. Следует отметить, что для изготовления сферических линз Люнебурга и геодезических линз нельзя использовать планарные технологии.

Широкий двумерный сектор обзора обеспечивают полифокальные системы, наиболее простыми из которых являются бифокальные. В работах [18-21] развита методика синтеза бифокальных цилиндрических двухзеркальных, линзовых и зеркально-линзовых систем с минимальной среднеквадратической аберрацией (СКА), а также трехмерных бифокальных линз.

В данной работе рассматриваются многолучевые антенны, построенные на основе синтезированных и оптимизированных по указанной методике бифокальных систем.

1. Многолучевые антенны на основе планарных двухзеркальных бифокальных систем.

Многолучевая антенна на основе цилиндрической двухзеркальной бифокальной системы с минимальной величиной СКА (5×10^{-5}) в угле обзора 105^{0} , синтезированной в работах [18, 19], показана на рис.1. Антенна содержит три слоя (три планарных волновода (1), расположенных друг над другом). В

первом из них расположена облучающая система Н-секториальных рупоров (2), на выходе третьего- Е-секториальный рупор (2). Волноводы связаны между собой щелями (4), которые замыкаются конформными им зеркалами (3) бифокальной системы.

Рис. 1. Многолучевая антенна на основе бифокальной двухзеркальной системы с минимальной СКА: 1- планарный волновод, 2- рупор, 3- зеркала, 4- щели связи, 5- облучатели.

На рис. 2, 3, соответственно, показаны зависимости коэффициента усиления (КУ) и величины КИП от угла обзора антенны для двух значений размера апертуры линзы (D) в Н-плоскости, рассчитанные с использованием метода конечных элементов в программной среде Ansys HFSS и в приближении Кирхгофа. Размеры волноводов в Е плоскости равны 0,16 длины волны (λ), параметры облучателей (Н-секториальных рупоров) выбраны из условия облучения краев двухзеркальной системы по уровню -10 дБ, размер Е-секториального рупора в Е-плоскости равен 1.1 λ , в Н плоскости – 1.2*D*, ширина щелей связи *d*=0.12 λ .

Рис.2 .Зависимости коэффициента усиления от угла обзора:1- *D*=20λ, МКЭ, 2-*D*=20λ, Кирхгоф,3- *D*=1000λ, Кирхгоф.

Рис. 3. Зависимости КИП от угла обзора: *1- D*=20λ, МКЭ, *2-D*=20λ, Кирхгоф, 3-*D*=1000λ, Кирхгоф.

При расчете величины КИП учитывалась полная апертура антенны, т.е. апертура рупора (2), которая выбрана большего размера в Н-плоскости, чем апертура зеркальной системы для обеспечения согласования при отклонении главного лепестка ДН на угол 52.5⁰.

На рис.3 видно, что величина КИП зависит от размера апертуры антенны в Н-плоскости только в центре и на краях сектора обзора, что говорит о влияния СКА на эту величину. При этом для небольших значений D/λ можно без потери усиления антенны использовать бифокальную систему с большей величиной СКА, но с меньшим размером фокального расстояния и, соответственно, облучающей системы.

На рис.4 показана такая антенна, параметры двухзеркальной системы, в которой найдены по методике работы [18] СКА равна 1×10^{-4} , а поверхности зеркал продлены до краев апертуры. Видно, что с уменьшением фокального расстояния габариты облучающей системы уменьшаются, при этом СКА увеличивается примерно в два раза по сравнению с минимальной величиной.

На рис.5 и рис.6 показаны зависимости КУ и КИП антенны от угла обзора, рассчитанные двумя методами для разных электрических размеров апертуры антенны. На рис.6 видно, что КИП антенны при $D=20\lambda$ примерно такой же, как у антенны на основе бифокальной системы с минимальной СКА (рис.3), а при $D=1000\lambda$ – меньше (особенно сильно на краях сектора обзора) из-за увеличения фазовых аберраций.

Рис.4. Многолучевая антенна на основе бифокальной двухзеркальной системы с компактной облучающей системой.

Рис.5. Зависимости коэффициента усиления от угла обзора: *1-D*=20λ, МКЭ; *2-D*=20λ, Кирхгоф, *3-D*=500λ, Кирхгоф, *4- D*=1000λ, Кирхгоф.

Рис.6. Зависимости КИП от угла обзора: *1-D*=20λ,МКЭ; *2-D*=20λ, Кирхгоф, *3-D*=500λ, Кирхгоф, *4- D*=1000λ Кирхгоф.

При разработке многолучевых антенн с умеренным электрическим размером можно оптимизировать параметры бифокальной двухзеркальной системы, максимизируя величину КУ (КИП) антенны с использованием численного моделирования.

На рис. 7 показан вариант такой антенны, а на рис. 8 и рис. 9, соответственно, показаны зависимости КУ и КИП антенны от угла обзора.

Рис.7. Многолучевая антенна на основе бифокальной двухзеркальной системы с оптимизацией по максимуму КИП.

Рис.8. Зависимости коэффициента усиления антенны от угла обзора: *1-D*=20λ, МКЭ; *2-D*=20λ, Кирхгоф, *3-D*=100λ, Кирхгоф.

Рис.9. Зависимости КИП антенны от угла обзора: *1-D*=20λ, МКЭ; *2-D*=20λ, Кирхгоф, *3-D*=100λ, Кирхгоф.

Рис. 10. Диаграммы направленности антенны, рассчитанные с использованием МКЭ (1) и методом Кирхгофа (2).

На рис.9 видно, что КИП антенны при $D=20\lambda$ в угле обзора 100^{0} не ниже 0.5, а максимальное значение (при центральном положении луча) составляет 0.84, т.е. выше, чем в предыдущих вариантах.

На рис. 10 показаны диаграммы направленности 13 лучей многолучевой антенны, оптимизированной по максимуму КИП, рассчитанные двумя методами

для $D/\lambda = 20$. Видно, что метод Кирхгофа правильно описывает структуру главных лепестков лучей антенны во всем секторе обзора.

Число лучей в секторе обзора 100⁰ при увеличении *D*/λ до 1000 (в первом варианте антенны) при использовании в качестве облучателей Н-секториальных рупоров – 650.

2. Многолучевые антенны на основе планарных бифокальных зеркально-линзовых систем.

Многолучевая антенна на основе зеркально-линзовой системы с минимальной СКА (1.3×10^{-4}), синтезированной в работах [18, 21], показана на рис.11.

Рис. 11. Многолучевая антенна на основе планарной зеркально-линзовой системы с минимальной СКА: *1*-первый планарный волновод, 2-Е-секториальный рупор, *3*-линза, *4*-зеркало,*5*-согласующий слой линзы, *6*-щель связи, *7*-облучатели.

В отличие от двухзеркального варианта зеркально-линзовая антенна – двухслойная, т.е. содержит только два планарных волновода.

На рис. 12 и рис. 13, соответственно, показаны зависимости величины КУ и КИП для двух значений электрического размера апертуры в Н-плоскости, рассчитанные двумя методами. Размеры планарных волноводов в Е плоскости равны 0.16λ, параметры H-секторальных рупоров выбраны из условия облучения краев зеркально-линзовой системы по уровню -10 дБ, размер Е-секторального рупора в Е-плоскости равен 1.1λ, размер в H-плоскости – 1.2D, ширина щелей связи *d*=0.12 λ.

Рис. 12.Зависимости коэффициента усиления антенны на основе планарной зеркально-линзовой системы с минимальными аберрациями от угла обзора: *1*-D=20λ, МКЭ, 2- D=20λ, Кирхгоф, 3- D=500λ, Кирхгоф.

Рис. 13. Зависимости КИП от угла обзора: *1* - *D*=20λ, МКЭ, *2* - *D*=20λ, Кирхгоф, 3 - *D*=500λ, Кирхгоф.

Как видно на рис.13 КИП зависит в рассмотренных примерах от размера апертуры в Н-плоскости только в центре сектора обзора, что говорит влиянии аберрации на эту величину. Для небольших значений D/λ , как и в двухзеркальном варианте, можно использовать бифокальную систему с большей величиной СКА, но с более компактной облучающей системы. Параметры такой системы с величиной СКА(4×10⁻⁴) были найдены по методике работы [21], а соответствующая многолучевая антенна показана на рис.14.

Рис. 14. Многолучевая антенна на основе бифокальной зеркально-линзовой системы с компактной облучающей системой: *1*-первый планарный волновод, 2-Е-секторальный рупор, *3*- линза, *4*- зеркало,*5*- согласующий слой линзы, *6*-щель связи, *7*- облучатели.

Рис. 15. Зависимости коэффициента усиления антенны на основе планарной зеркально-линзовой системы с компактной облучающей системой от угла обзора: *1*- *D*=20λ, МКЭ, *2*- *D*=20λ, Кирхгоф, *3*- *D*=500λ, Кирхгоф.

На рис. 15 и рис.16, соответственно, показаны зависимости КУ и КИП от угла обзора этой антенны, рассчитанные двумя методами, а на рис.17 – диаграммы направленности 13 лучей антенны для $D/\lambda = 20$.

Рис. 16. Зависимости КИП от угла обзора:*1- D*=20λ, МКЭ, *2- D*=20λ, Кирхгоф, 3- *D*=100λ, Кирхгоф.

Рис. 17. Диаграммы направленности лучей антенны на основе бифокальной зеркально-линзовой системы с компактной облучающей системой.

Как видно на рисунках, сектор обзора антенны по уровню КИП = 0.5 составляет более 80^{0} . Число лучей при $D/\lambda = 20$ в этом секторе – 11, при $D/\lambda = 100 - 55$, а при увеличении D/λ до 500 (в первом варианте антенны) число лучей увеличивается до 275.

3. Многолучевые антенны на основе планарных бифокальных линз.

Многолучевая антенна на основе бифокальной линзы из полистирола с минимальной аберрацией, синтезированной в работах [18, 20], показана на рис.18. Антенна состоит из планарного волновода (1), Е-секториального рупора (2) бифокальной диэлектрической линзы (3) и разработанных металлодиэлектрических облучателей (5), которые находятся внутри волновода (1). Для улучшения согласования на входной и выходной поверхности линзы имеются выступы длиной равной четверти длины волны в диэлектрике.

Рис. 18. Многолучевая антенна на основе бифокальной диэлектрической линзы с минимальной СКА: *1*- планарный волновод, 2- *E*-секторальный рупор, 1- бифокальная диэлектрическая линза, 4- согласующие выступы, 5- метало- диэлектрические облучатели.

Метало-диэлектрический облучатель (рис.19) состоит из металлического рупора (1) и выступающего из него ступенчато-нерегулярного в Е- плоскости диэлектрического стержня прямоугольного сечения (2). Нерегулярная часть стержня (3) внутри волноводной части рупора обеспечивает его согласование с полым волноводом в полосе частот более 50 % по уровню -20 дБ.

Рис. 19. Метало-диэлектрический облучатель: *1*- диэлектрический стержень, *2*-*H*-секториальный рупор, *3*-согласующие слои стержня.

Рис.20.Зависимости коэффициента усиления от угла обзора: $1 - D = 27.5\lambda$, МКЭ, $2 - D = 27.5\lambda$, Кирхгоф, $3 - D = 350\lambda$, Кирхгоф.

Рис. 21. Зависимости КИП от угла обзора: :*1- D*=27.5λ, МКЭ, *2- D*=27.5λ, Кирхгоф, *3- D*=350λ, Кирхгоф.

На рис. 20 и рис. 21, соответственно, показаны зависимости КУ и КИП от угла обзора антенны для двух значений электрического размера апертуры в Нплоскости, рассчитанные двумя методами. Размеры волноводов в Е плоскости равны 0.3 λ , размер Е-секториального рупора в Е-плоскости равен 1.85 λ , в Нплоскости 1.2D.

Как видно на рис.21 сектор обзора по уровню КИП 0.5 около 80^{0} для обоих электрических размеров апертуры. Для небольших значений D/λ , как и в двух предыдущих вариантах фокусирующих систем, можно использовать бифокальную систему с большей величиной СКА, но с более компактной облучающей системы. Параметры такой системы с величиной СКА 4x10⁻⁴ в угле зрения 90⁰ были найдены по методике работы [21], а соответствующая многолучевая антенна показана на рис.22.

Рис. 22. Многолучевая антенна на основе бифокальной диэлектрической линзы с компактной облучающей системой

На рис. 23, 24 показаны зависимости КУ И КИП от угла обзора этой антенны, рассчитанные двумя методами для двух размеров линзы в Н-плоскости, а на рис.25 – диаграммы направленности 29 лучей антенны с размером D= 27.5 λ .

Как видно на рис.24, сектор обзора антенны по уровню КИП = 0.5 более 80^{0} . Число лучей при D/λ =350 равно 370.

Рис.23. Зависимости коэффициента усиления от угла обзора: *1- D*=28.8λ, МКЭ; *2- D*=58λ, Кирхгоф; *3- D*=28.8λ, МКЭ; *4- D*=58λ, Кирхгоф.

Рис.24. Зависимости КИП от угла обзора: *1- D*=28.8λ, МКЭ; *2- D*=58λ, Кирхгоф; *3- D*=28.8λ, МКЭ; *4- D*=58λ, Кирхгоф

Рис. 25. Диаграммы направленности многолучевой антенны на основе бифокальной линзы с компактной облучающей системой.

Для проверки полученных результатов был изготовлен экспериментальный образец многолучевой антенны на основе планарной бифокальной линзы толщиной 3мм и *D*= 288мм (рис.26). Размер рупора в Еплоскости-18.5 мм, в Н-плоскости 400 мм, рабочая часть (часть планарного волновода и рупора закрыта поглотителем) 340 мм. Для учета взаимодействия облучателей рядом с активным излучателем расположены по одному пассивному, нагруженному на согласованную нагрузку.

На рис 26а и 26б, соответственно, показаны зависимости КУ и КИП экспериментального образца от угла обзора. Для сравнения на рисунках приведены аналогичные зависимости, рассчитанные с использованием МКЭ.

Рис.26. Экспериментальный образец многолучевой антенны на основе бифокальной диэлектрической линзы.

Рис. 27. Зависимости от угла обзора коэффициента усиления и КИП экспериментального образца многолучевой антенны на основе бифокальной линзы: 1- результаты измерений; 2- результаты моделирования с использованием МКЭ.

Как видно на рис.27а, измеренные зависимости КУ экспериментального образца идут на 2 дБ ниже результатов моделирования, что можно объяснить не учетом при моделировании тепловых потерь в металле и диэлектрике, а также погрешностями изготовления и измерения.

4. Многолучевая антенна на основе трехмерной диэлектрической бифокальной линзы.

Рассмотренные выше многолучевые антенны на основе планарных бифокальных систем могут обеспечить широкие углы обзора и большое количество лучей в Н-плоскости при относительно небольших величинах КУ. Для увеличения КУ можно использовать эти антенны в качестве облучающих систем для цилиндрической фокусирующей системы в ортогональной плоскости. Такая фокусирующая системы может быть однозеркальной, двухзеркальной или линзовой. Для реализации максимального КУ можно использовать двухзеркальную цилиндрическую систему, синтезированную в работе [22].

Другой путь увеличения КУ многолучевой антенны заключается в использовании в качестве фокусирующего элемента трехмерной бифокальной диэлектрической линзы.

На рис.28 показана многолучевая антенна на основе трехмерной бифокальной диэлектрической линзы, синтезированной в работе [21]. Антенна состоит из диэлектрической линзы (1) и системы облучателей в виде пирамидальных рупоров (2). Параметры рупоров подобраны из условия облучения кромки апертуры линзы на уровне -10 дБ.

На рис. 29а и 29б, соответственно, показаны зависимости КУ и КИП от угла обзора в Н-плоскости многолучевой антенны на основе трехмерной диэлектрической бифокальной линзы с круглой апертурой и двумя значениями диаметра (*D*), рассчитанные в приближении Кирхгофа.

Рис.28. Многолучевая антенна на основе трехмерной бифокальной диэлектрической линзы, 1-трехмерная бифокальная диэлектрическая линза, 2-облучатели.

Рис.29. Зависимости от угла обзора коэффициента усиления и КИП многолучевой антенны на основе трехмерной бифокальной диэлектрической линзы: *1- D*= 20λ, 2- *D*= 100λ.

Как видно на рис.296 максимальная величина КИП антенны на основе трехмерной бифокальной диэлектрической линзы больше, чем у антенн на основе цилиндрических бифокальных систем (см. выше), что связано с наличием у последних рупора в Е-плоскости с увеличенным размером апертуры в Нплоскости. При этом скорость падения величины КИП с увеличением угла обзора у антенны на основе трехмерной бифокальной диэлектрической линзы также выше.

Рис.30. Диаграммы направленности лучей многолучевой антенны на основе трехмерной диэлектрической бифокальной линзы при *D*= 20λ.

Рис.31. Диаграммы направленности лучей многолучевой антенны на основе трехмерной диэлектрической бифокальной линзы при *D*= 100λ.

На рис. 30, 31 показаны диаграммы направленности лучей многолучевой антенны на основе трехмерной диэлектрической бифокальной линзы с разным диаметром апертуры, рассчитанные в приближении Кирхгофа. Для удобства сравнения число лучей (17) на рисунках одинаковое, хотя в последнем случае это число в 5 раз больше (показан каждый пятый луч).

Заключение

На основании полученных результатов можно сделать следующие выводы:

1. Многолучевая антенна на основе планарной бифокальной двухзеркальной системы позволяет сформировать в одной плоскости до 650 лучей в секторе обзора 100⁰.

2. Многолучевая антенна на основе планарной бифокальной зеркальнолинзовой системы позволяет сформировать в одной плоскости до 275 лучей в секторе обзора 80⁰.

3. Многолучевая антенна на основе планарной бифокальной линзы с металлодиэлектрическими облучателями позволяет сформировать в одной плоскости до 370 лучей в секторе обзора 80⁰.

4. Многолучевая антенна на основе трехмерной бифокальной линзы позволяет сформировать в одной плоскости 85 лучей в секторе обзора 80⁰.

5. Предельные возможности многолучевой антенны на основе трехмерной бифокальной линзы, в том числе формирования лучей во всем пространстве, требуют дальнейших исследований.

Финансирование: Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме 0030-2019-006.

Автор для переписки: Калошин Вадим Анатольевич, kaloshin.v@mail.ru

Литераура

- Wei Hong, Zhi Hao Jiang, Chao Yu, Jianyi Zhou, and others. Multibeam Antenna Technologies for 5G Wireless Communications. *Transactions On Antennas And Propagation*. 2017. V.65. №12. P.6231-6249.
- Шишлов А.В. Многолучевые антенные для систем радиолокации и связи. Журнал радиоэлектроники. 2018. №7. https://www.doi.org/10.30898/1684-1719.2018.7.6.
- Ahmad Emadeddin, Mohammad Ali Salari, Mahdi Zoghi, Amin Darvazehban, and Omid Manoochehri. A Compact Ultra-Wideband Multibeam Antenna System. *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*. 2018. V.66. №1. P.125-131.
- A. Bart Smolders, Aleksei Dubok, Netsanet M. Tessema, and others. Building 5GMillimeter-Wave Wireless Infrastructure. *IEEE Antennas & Propagation Magazine*. 2019. №4. P.53-62.
- 5. Ali Shahi, Mahmoud Mohammad –Taheri, Iman Aryanian. A 5GMultibeam Antenna Including Rotman Lens and Slot Array Antenna. Proceedings of the 5th International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT). P.78-81. DOI: 10.1109/MMWaTT.2018.8661224
- 6. Gianfranco Ruggerini, Pasquale Giuseppe Nicolaci, Giovanni Toso, and Piero Angeletti. A Ka-Band Active Aperiodic Constrained Lens Antenna for Multibeam Applications. *IEEE ANTENNAS & PROPAGATION MAGAZINE*. 2019. №10. P.60-68.
- Hsi-Tseng Chou, Zong-Chen Tsai, and Siddhartha Panigrahi. Tri-Focal Configuration of Three-Dimensional Metallic Waveguide-Array Lens Antennas of Rotman Lens Concept for Multi-Beam Applications. *IEEE Access*. 2019. V.7. P.144524-144535.
- Kamelia Quzwain, Yoshihide Yamada, Kamilia Kamardin, Nurul Huda Abd Rahman, Tharek Abd Rahman. Design of Shaped Offset Dual-Reflector Antennafor 5G Mobile Base Station. *Proceedings of IEEE International RF and Microwave Conference*. USA. 2018. P.5-8.

- Mingzhu Li, Hui Zhang, Jianyu Guo, Peng Chen, Xutao Yu. A Novel Reflector Structure for Realizing Optical Multi-beam Application. *11th UK-Europe-China* Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). China. 2018. DOI: 10.1109/UCMMT45316.2018.9015667
- 10. Yujian Li, Lei Ge, Meie Chen, Zhan Zhang, Zheng Li, and Junhong Wang. Multibeam 3-D-Printed Luneburg Lens Fed by Magnetoelectric Dipole Antennas for Millimeter-Wave MIMO Applications. *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*. 2019. V.67 №5. P.2923-2933.
- Henry Giddens and Yang Hao. Multibeam Graded Dielectric Lens Antenna From Multimaterial 3-D Printing.CIIIA. *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*. 2020. V.68. №9. P.6832-6837.
- 12. Dmitry V. Denisov, Sergey. N. Shabunin, Dmitry. V. Kusaykin, Maxim. A. Klevakin. Base Station Multibeam Antenna for 5G Network Based on the Lunenburg Lens Structure. *IEEE 15th INTERNATIONAL CONFERENCE OF ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING (APEIE)*. 2021. P.260-263.
- Hongda Lu, Zhipeng Liu, Yong Liu, Hongbin Ni, and Xin Lv. Compact Air-Filled Luneburg Lens Antennas Based on Almost-Parallel Plate Waveguide Loaded With Equal-Sized Metallic Posts. *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*. 2019. V.67. №11. P.6829-6838.
- 14. Liao Q., Fonseca N.J.G., and Quevedo-Terue O. Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics. *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*. 2018. V.66. №12. P.7383-7388.
- 15. Калошин В.А., Ле Д.Т., Ви У.Н. Многолучевые волноводно- щелевые антенные решетки с бифокальными диаграммо-образующими системами и широким сектором частотного сканирования. *Журнал радиоэлектроники*. 2020. № 3. https://www.doi.org/10.30898/1684-1719.2020.3.13

- 16. Калошин В.А, Ле Д.Т. Трехфокальная планарная волноводно-щелевая антенная решетка. РЭ. 2021. Т.66. №10. С. 974-979. https://www.doi.org/10.31857/S0033849421100077.
- 17. Калошин В.А, Ле Д.Т. Трехфокальная зеркально линзовая планарная волноводно щелевая антенная решетка. РЭ. 2021. Т.66. №11. С.1078-1084. https://www.doi.org/10.31857/S0033849421110048
- Kaloshin V.A., Nam Vi Ut Synthesis of Planar Bifocal Two Mirror, Lens and Mirror-Lens Beamforming Systems. *Int. Conf. 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW)*. June 28 – July 2. 2021. Divnomorskoe. Russia. P.159-162. doi: 10.1109/RSEMW52378.2021.9494139
- Калошин В.А., Нам Ви Ут. Синтез двухзеркальной бифокальной цилиндрической системы с минимальными аберрациями. РЭ. 2022. Т.67. №2. С.140-148. DOI: 10.31857/S003384942202005X
- 20. Калошин В.А., Нам Ви Ут. Синтез бифокальных диэлектрических линз. *Журнал радиоэлектроники* [электронный журнал]. 2022. №2. https://doi.org/10.30898/1684-1719.2022.2.11
- Калошин В.А., Нам Ви Ут. Синтез зеркально-линзовой бифокальной цилиндрической системы с минимальными аберрациями. РЭ. 2022. Т.67. №3. С.249-258. DOI: 10.31857/S0033849422020061
- 22. Калошин В.А., Нам Ви Ут. Двухзеркальная цилиндрическая антенная система с высоким коэффициентом использования поверхности. *Журнал радиоэлектроники* [электронный журнал]. 2021. №8. https://doi.org/10.30898/1684-1719.2021.8.19

Для цитирования:

Калошин В.А., Нам Ви Ут. Широкоугольные многолучевые антенны на основе бифокальных систем. *Журнал радиоэлектроники* [электронный журнал]. 2022. №3. https://doi.org/10.30898/1684-1719.2022.3.2