Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №3
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2022.3.5
MODEL-ORIENTED METHOD FOR CALCULATING RADAR PORTRAITS (SIGNATURES) OF METAL OBJECTS
E.E. Filippskikh, A.V. Popov, F.A. Galkin, S.V. Morozov
Military space academy by A. Mozhaysky name
13, Zhdanovskaya st. 197198, St. Petersburg
The paper was received March 4, 2022
Abstract. The article describes the method proposed by the authors for forming radar portraits (signatures) of objects of complex spatial configuration with a conductive surface based on digital spatial (three-dimensional) models of their description in approximation of geometric optics methods. The developed model-oriented technique is intended for calculation of multiple radar portraits of quasi-stationary objects, which include various types of ground, aviation and marine equipment, against the background of underlying surface in relation to the specified parameters and conditions of radar observation of the earth 's surface. A distinctive feature in the implementation of this technique is the possibility of prompt obtaining of radar portraits (signatures) of metal objects of complex shape with the degree of adequacy and in volumes providing automation of processing of natural radar images on the basis of artificial intelligence technologies, including with support of specialized banks of reference radar data formed on their basis.
Key words: technique, radar photograph, portrait, signature, complex object, radar sensor, digital 3d terrain model, effective scattering area, local center of scattering.
Corresponding author: Evgeniy Eduardovich Filippskikh, phil_ml@list.ru
1. Obnaruzheniye, raspoznavaniye i opredeleniye parametrov obrazov ob”yektov. Metody i algoritmy. [Detection, recognition and determination of parameters of object images. Methods and Algorithms]. Ed. A.V. Root. Moscow, Radio engineering Publ. 2012. 112 p. (in Russian).
2. Ufimtsev P.Ya. Metod krayevykh voln v fizicheskoy teorii difraktsii [Edge wave method in the physical theory of diffraction]. Moscow, Ripol Klassik Publ. 1962. 244 p. (in Russian).
3. Maltsev V.V., Sisigin I.V., Kolesnikov K.O. Approach to modeling radar signals reflected from objects of complex spatial configuration. Radiopromyshlennost’ [Radio industry] 2018. №1. P.42-49. (in Russian).
4. Suchkov V.B. An object-oriented method for determining the complex reflection coefficients of the elements of a polygonal model of a location object Sistemy i sredstva svyazi, televideniya i radioveshchaniya [Systems and means of communication, television and radio broadcasting]. 2013. №.1-2. P.159-165 (in Russian).
5. Kobak V.O. Radiolokatsionnyye otrazhateli [Radar reflectors]. Moscow, Sov. radio Publ. 1975. 248 p. (in Russian).
6. Borovikov V.A., Kinber B.E. Geometricheskaya teoriya difraktsii [Geometric theory of diffraction]. Moscow, Communication Publ. 1978. 248 p. (in Russian).
7. Syuzev V.V., Dodenko I.A. Applicability of a highly detailed mathematical model of background-target environment in radar simulation stands with a synthetic aperture antenna. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroyeniye. [Bulletin of MSTU im. N.E. Bauman. Ser. Instrumentation]. 2017. №6. P.76-92 (in Russian).
8. Byrkov I.A., Filippskikh E.E. Calculation of radar images based on three-dimensional digital terrain models Informatsionno-izmeritel’nyye i upravlyayushchiye sistemy [Information-measuring and control systems]. 2009. №.7. P.62-69 (in Russian).
9. Filippskikh E.E., Popov A.V., Kuzmin V.V., Vladimirov V.V. Modeling of radar images of the underlying surface for video support for the detection of small objects. Informatsiya i Kosmos [Information and Space]. 2016. №.3(6). Р.124‑131. (in Russian).
10. Zubkovich S.G., Byrkov I.A. Database of monostatic and bistatic reflective characteristics of typical natural backgrounds and artificial coatings Nauch.-tekhn. sb. (Tr. voysk. chasti 41513). [Sc.-tech. coll. (Tr. troops. parts 41513)]. MO RF Publ. 2003. №.5. P.251-257 (in Russian).
11. Verba V.S., Neronsky L.B., Osipov I.G., Turuk V.E. Radiolokatsionnyye sistemy zemleobzora kosmicheskogo bazirovaniya [Radar systems for space-based land survey]. Moscow, Radio engineering Publ. 2010. 680 p. (in Russian).
12. Baskakov A.I., Zhutyaeva T.S., Lukashenko Yu.I. Lokatsionnyye metody issledovaniya ob”yektov i sred: uchebnik dlya stud. uchrezhdeniy vyssh. prof. Obrazovaniya [Location methods of research of objects and environments]. Moscow, Academy Publ. 2011. 384 p. (in Russian).
13. Vnotchenko S.L., Dostovalov M.Yu., Zaitsev A.B., Musinyants T.G. Analyss of the brightness characteristics of radar images of the Compact-100 SAR Trudy XX i XXI vserossiyskikh simpoziumov po radiolokatsionnomu issledovaniyu prirodnykh sred. [XX and XXI All-Russian Symposia on Radar Research of Natural Environments]. St. Petersburg, 2003. V.3. P.7-25 (in Russian).
14. Vnotchenko S.L., Dostovalov M.Yu., Ermakov R.V., Musinyants T.G., Sevalkin E.P. The main results of sounding the earth and water surface with a multi-frequency radar complex of radars with a synthetic aperture Kompakt Vestnik SibGAU [Bulletin of SibGAU]. 2013. V.5(51). P.35-38 (in Russian).
15. Stager E.A. Rasseyaniye radiovoln na telakh slozhnoy formy. [Scattering of radio waves on bodies of complex shape]. Moscow, Radio and communication Publ. 1986. 184 p. (in Russian).
16. Stager E.A. Radiolokatsionnyye antipody korabley [Radar antipodes of ships]. St. Petersburg, VVM Publ. 2009. 197 p. (in Russian).
17. Pavlenko D.V., Zdeh V.L. Using the Open CL technology to implement real-time radar imaging modeling. Voprosy radioelektroniki. [Issues of radio electronics]. 2018. №.9. Р.64-69 (in Russian).
For citation:
Filippskikh E.E., Popov A.V., Galkin F.A., Morozov S.V. Model-oriented method for calculating radar portraits (signatures) of metal objects. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №3. https://doi.org/10.30898/1684-1719.2022.3.5 (In Russian)