Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №3
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2022.3.6
FUNCTIONAL PROPERTIES OF FERROELECTRIC MATERIALS
BASED ON LEAD ZIRCONATE-TITANATE AND
TRIGLYCINE SULPHATE ON MACRO- AND MICROSCALE
V.V. Koledov1,2, V.G. Shavrov1,2, M.S. Bybik1, V.S. Kalashnikov1, A.V. Nesolenov1, A.P. Orlov1,
D.D. Kuznetsov1, S.V. von Gratowski1,2, A.P. Kamantsev1,2, G.A. Shandruk3,
A. Peláiz-Barranco4, K.P. Andryushin5, E.I. Sitallo5, I.P. Malashin1,6
1 IRE RAS, Mokhovaya 11-7, Moscow, 125009, Russia
2 Sirius University of Science and Technology, Olimpiiskii prospekt 1, Sochi, Krasnodar Krai, 354340, Russia
3 TIPS RAS, Leninsky prospekt 9, Moscow, 119991, Russia
4 Ferroic Materials Group, Physics Faculty – IMRE, Havana University, San Lázaro y L, Vedado. La Habana, 10400, Cuba
5SFedU, Bolshaya Sadovaya Str. 105/42, Rostov-on-Don, 344006, Russia
6 Bauman MGTU, 2-Baumanskaya St., 5, build. 1, Moscow, 105005, Russia
The paper was received January 10 2022
Abstract. Samples of ferroelectric functional materials based on lead zirconate titanate with the chemical formula PbTiO3-PbZrO3-PbNb2/3Zn1/3O3-PbNb2/3Mg1/3O3 and triglycine sulfate (NH2CH2COOH)3•H2SO4 were manufactured and characterized. The dielectric spectroscopy and differential scanning calorimetry confirmed the presence of phase transitions in them, and the characteristic transition temperatures were determined. Thermomechanical analysis method has been used to study thermally induced deformations in them, near phase transitions. The shape memory effect (SME) and electrocaloric effect in macro samples were studied. Methods of studying the SME on the microscale of sample sizes have been worked out. The process of formation of microstructures in these materials in the form of «micropillars» («micropillars») by selective ion etching with a focused ion beam is investigated. The process of deformation of «micro-pillars» with a diameter from 120 nm to 1 micron from ferroelectric materials using a microneedle mounted on a Kleidiek nanomanipulator in the vacuum chamber of a two-beam scanning microscope CrossBeam 1540 EsB has been studied.
Keywords: ferroelectrics, functional materials, phase transition, microstructures, ferroelectric crystals, micro-columns, microneedles, nanomanipulator, external fields, alternative energy
Funding: The study was carried out within the framework of the state task with the partial support of the Russian Foundation for Basic Research, grants No. 18-57-34002 and 20-37-51005.
Corresponding author: M.S. Bybik, ne.znachit.nichego@mail.ru
References
1. Zhang H., Zhou J., Shen J., Wang T., Xie D., Chen W. Tristate ferroelectric memory and strain memory in Bi1/2Na1/2TiO3-based relaxor ferroelectrics. Applied Physics Letters. 2018. №113(15). P.152902.
2. Wang X., Ludwig A. Recent Developments in Small-Scale Shape Memory Oxides. Shape Memory and Superelasticity. 2020. V.6. №3. P.287-300.
3. Liu W. et al. Electro-shape-memory effect in hybrid doped BaTiO3 ceramics. Materials Science and Engineering: A. 2006. V.438. P.350-353.
4. Silva J. et al. BiFeO3: a review on synthesis, doping and crystal structure. Integrated Ferroelectrics. 2011. V.126. №1. P.47-59.
5. Zeches R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 Science. 2009. V.326. №5955. P.977-980.
6. Hu Y. et al. Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials. 2021. V. №5. P.612-617.
7. You Y. M. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science. 2017. V.357. №6348. P.306-309.
8. Liao W. Q. et al. A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science. 2019. V.363. №6432. P.1206-1210.
9. Tang Y. Y. et al. Multiaxial molecular ferroelectric thin films bring light to practical applications. Journal of the American Chemical Society. 2018. V.140. №26. P.8051-8059.
10. Chen P. et al. Shape memory effect in Na0. 5Bi0. 5TiO3-based ferroelectric ceramics. Acta Materialia. 2022. V.223. P.117479.
11. Zhuo F. et al. Giant shape memory and domain memory effects in antiferroelectric single crystals. Materials Horizons. 2019. V.6. №8. P.1699-1706.
12. Zhuo F. et al. Perspective on antiferroelectrics for energy storage and conversion applications. Chinese Chemical Letters. 2021. V.32. №7. P.2097-2107.
13. Hou H. et al. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device. Nature communications. 2018. V.9. №1. P.1-8.
14. Hou H., Qian S., Takeuchi I. Materials, physics and systems for multicaloric cooling. Nature Reviews Materials. 2022. P.1-20.
15. Khassaf H. et al. Flexocaloric response of epitaxial ferroelectric films. Journal of Applied Physics. 2018. V.123. №2. P.024102.
16. Porta M. et al. Flexocaloric effect near a ferroelastic transition. Physical Review B. 2021. V.104. №9. P.094108.
17. Patel S. Flexo/elasto-caloric effects in 0.66 Pb (Mg1/3Nb2/3) O3-0.34 PbTiO3 single crystal. Materials Letters. 2021. V.287. P.129301.
18. Patel S. Flexocaloric effect in ferroelectric materials: methods of indirect evaluation. Applied Physics A. 2021. V.127. №6. P.1-13.
19. Li C. et al. Giant room temperature elastocaloric effect in metal-free thin-film perovskites. npj Computational Materials. 2021. V.7. №1. P.1-8.
20. Wang F. et al. Elastocaloric Effect in PbTiO3 Thin Films with 180° Domain Structure: A Phase Field Study. Chinese Physics Letters. 2018. V.35. №3. P.037701.
21. Murillo-Navarro D. E., Graf M., Íñiguez J. Coexisting conventional and inverse mechanocaloric effects in ferroelectrics. Physical Review B. 2021. V.104. №18. P.184112.
22. Li J. et al. Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3) 2MnCl4 under Low Pressure Near Room Temperature. Advanced Functional Materials. 2021. V.31. №46. P.2105154.
23. Mikhaleva E. A. et al. Features of the behavior of the barocaloric effect near ferroelectric phase transition close to the tricritical point. Crystals. 2020. V.10. №1. P.51.
24. Lloveras P., Tamarit J. L. Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability. 2021. V.8. №1. P.3-15.
25. Kumar A. et al. Vibration induced refrigeration using ferroelectric materials. Scientific reports. 2019. V.9. №1. P.1-9.
26. Hu Y. et al. Chemically driven energetic molecular ferroelectrics. Nature communications. 2021. V.12. №1. P.1-7.
27. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. Москва, Мир. 1981.
28. Смоленский Г. А. Сегнетоэлектрики и антисегнетоэлектрики. Ленинград, Наука. 1971.
29. Hussain A. et al. Mechanical investigations on piezo-/ferrolectric maleic acid-doped triglycine sulphate single crystal using nanoindentation technique. Arabian Journal of Chemistry. 2020. V.13. №1. P.1874-1889.
30. Du Z. et al. Size effects and shape memory properties in ZrO2 ceramic micro-and nano-pillars. Scripta Materialia. 2015. V.101. P.40-43.
31. Lai A. et al. Shape memory and superelastic ceramics at small scales. Science. 2013. V.341. №6153. P.1505-1508.
For citation:
Koledov V.V., Shavrov V.G., Bybik M.S. Functional properties of ferroelectric materials based on lead zirconate-titanate and triglycine sulphate on macro- and microscale. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №4. https://doi.org/10.30898/1684-1719.2022.3.6 (In Russian)