Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.3.13

 

 

FEATURES OF MEASURING THERMAL RESISTANCE

OF POWERFUL MICROWAVE Gan TRANSISTORS

 

V.I. Smirnov 1,2, A.A. Gavrikov 1, I.V. Shukov 3., A.A. Shalaevsky 3,4, V.F. Neichev 2

 

1 Ulyanovsk Branch of Kotelnikov IRE RAS,

432071, Russia, Ulyanovsk, Goncharov st. 48/2

2 Ulyanovsk State Technical University,

432027, Russia, Ulyanovsk, Severnyy Venets 32

3 JSC Svetlana-Rost, 194156, Russia, St. Petersburg, Engels Ave., 27

4 St. Petersburg State Electrotechnical University (LETI) named after V.I. Ulyanov (Lenin), 197022, Russia, St. Petersburg, Professor Popov St., 5

 

The paper was received December 13, 2024.

 

Abstract. The results of measurements of thermal resistance of gallium nitride HEMT transistors of two types are presented: with a heterojunction and an MIS structure in the gate circuit. For transistors with a heterojunction, the gate voltage UGS was used as a temperature-sensitive parameter (TSP), and for transistors with an MIS structure, the voltage between the drain and source UDS was used. The thermal resistance was measured by a standard method using transistor heating by current pulses of constant duration and a modulation method in which the transistors were heated by variable power with a harmonic modulation law. The measurement results are in good agreement with each other, which indicates the correctness of using the modulation method. The advantage of the modulation method is the ability to measure the components of thermal resistance associated with the design features of the measurement object.

Key words: thermoelectric processes, thermal resistance, microwave transistors, gallium nitride, modulation method.

Financing: the work was carried out within the framework of a state assignment of UF Kotelnikov IRE RAS

Corresponding author: Gavrikov A.A., a.gavrikoff@gmail.com

 

References

1. Iunovich A.E. Svetodiody na osnove geterostruktur iz nitride gallija I ego tverdyh rastvorov [LEDs based on heterostructures of gallium nitride and its solid solutions] // Svetotehnika. – 1996. – V. 5/6. – P. 2-7. (In Russian)

2. Persson E., Rentyuk V. Preimushchestva ispol'zovaniya nitrid-gallievyh tranzistorov v silovoj elektronike [Advantages of Using Gallium Nitride Transistors in Power Electronics] // Silovaya elektronika. – 2015. – V. 3. – No. 54. – P. 6-8. (In Russian)

3. Gol'cova M. Moshchnye GaN-tranzistory. Istinno revolyucionnaya tekhnologiya [GaN Power Transistors: A Truly Revolutionary Technology] // Elektronika: nauka, tekhnologiya, biznes. – 2012. – No. 4. – P. 86-101. (In Russian)

4. Lidou A., Stridom J. Rejsh D. Tekhnologiya GaN bystro zavoevyvaet novye rynki [GaN technology is rapidly conquering new markets] // Komponenty i tekhnologii 2014. No 9. P. 155–158. (In Russian)

5. GOST 19656.15–84. Microwave semiconductor diodes. Methods for measuring junction-to-case thermal resistance and pulsed thermal resistance. [Microwave semiconductor diodes. Methods for measuring junction-case thermal resistance and pulse thermal resistance.] Moscow: Publishing House of Standards. 1984. 21 p. (In Russian)

6. Thermal Impedance Measurements for Vertical Power MOSFETs (Delta Source-Drain Voltage Method). JEDEC JESD24-3 standard

7. Thermal Impedance Measurement for Insulated Gate Bipolar Transistors – (Delta VCE(on) Method). JEDEC JESD24-12 standard

8. Thermal Impedance Measurements for Bipolar Transistors (Delta Base-Emitter Voltage Method). JEDEC JESD24-4 standard

9. Egorkin V. i dr. Normal'no-zakrytyj tranzistor s zatvorom p-tipa na osnove geterostruktur AlGaN/GaN [Normally-off p-gate transistor based on AlGaN/GaN heterostructures] // Izvestiya vysshih uchebnyh zavedenij. Elektronika. – 2020. – V. 25. – No. 5. – P. 391-401.

10. Erofeev E.V. i dr. Moshchnye GaN-tranzistory s podzatvornoj oblast'yu na osnove MDP-struktur [Power GaN transistors with a gate region based on MIS structures] // Fizika i tekhnika poluprovodnikov. – 2017. – V. 51. – No. 9. – P. 1278-1281.

11. Bondar' D.M. Poluprovodnikovaya mikroelektronika – 2021 g. CHast' 2. SiC i GaN – osnova novoj silovoj elektroniki nastoyashchego i budushchego [Semiconductor Microelectronics – 2021 Part 2. SiC and GaN – the Basis of New Power Electronics of the Present and Future] // Elektronnye komponenty 2022. No.1. P. 6–16. (In Russian)

12. JSC "Voronezh Plant Semiconductor Devices - Assembly" [web]. Last access 30.11.2024. URL: https://eandc.ru/techinfo/vzpp.pdf

13. Smirnov V.I., Sergeev V.A., Gavrikov A.A., Kulikov A.A. Measuring thermal resistance of GaN HEMT transistors // IEEE Transactions on Electron Devices. 2020. V. 67. No. 10. P. 4112-4117.

14. Smirnov V. I. et al. Thermal impedance measurement of power transistors //Radiotehnika. – 2017. – No. 6. – P. 83-90.

15. Oettinger F., Blackburn D. Thermal resistance measurements // U.S. Government Printing Office. 1990. 72 p.

16. Industry Standard 11 0944-96. Mikroskhemy integral'nyye i pribory poluprovodnikovyye. Metody rascheta, izmereniya i kontrolya teplovogo soprotivleniya [Integrated circuits and semiconductor devices. Methods for calculating, measuring and controlling thermal resistance]. Moscow, GUP NPP Pulsar. 1997. 110 p. (In Russian).

17. Smirnov V. I. i dr. Sravnitel'nyj analiz standartnogo i modulyacionnogo metodov izmereniya teplovogo soprotivleniya moshchnyh bipolyarnyh tranzistorov [Comparative analysis of standard and modulation methods for measuring thermal resistance of high-power bipolar transistors] // Zhurnal radioelektroniki. – 2019. – No. 1. – P. 6-6. (In Russian).

For citation:

Smirnov V.I., Gavrikov A.A., Shukov I.V., Shalaevsky A.A., Neichev V.F. Features of measuring thermal resistance of high-power microwave transistors on GaN // Journal of Radio Electronics. – 2025. – No. 3. https://doi.org/10.30898/1684-1719.2025.3.13 (In Russian)