Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.3.14
DEVELOPMENT OF A MILLIMETER-WAVE CYCLOTRON RESONANCE RECTIFIER
FOR ADVANCED SYSTEMS
OF WIRELESS ENERGY TRANSMISSION
A.P. Gashturi, M.Yu. Glyavin, G.G. Denisov, I.V. Zheleznov,
I.V. Zotova, V.N. Manuilov, S.V. Samsonov, A.S. Sergeev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS
46 Ul'yanov Street, Nizhny Novgorod, 603950, Russia
The paper was received December 12, 2024
Abstract. We discuss the possibility of significantly increasing the operating frequency of cyclotron resonant rectifiers for advanced systems of microwave wireless power transmission. Such systems, also called as cyclotron energy converters, are based on the absorption of a microwave signal with subsequent recovery of the accumulated electron energy. Increasing the frequency of cyclotron energy converter can be reached by using the interaction of a large-radius cylindrical electron beam with a high-order transverse waveguide mode. This principle is well known for gyrotrons; thus, the cyclotron energy converter can be considered as an “inverted” gyrotron that do not generate, but absorb radiation. The paper contains estimations of the efficiency of the cyclotron energy converters with an operating frequency of 35 GHz, as well as a principal design of its main components, including an electron optical system and a two-directional quasi-optical converter for input/output of microwave radiation.
Key words: wireless energy transmission, microwave radiation, cyclotron resonance absorption, gyrotrons
Financing: This work was supported by the Russian Science Foundation, grant No. 19-79-30071 (continued).
Corresponding author: Zheleznov Ilia Vladimirovich, zheleznoviv@ipfran.ru
References
1. McSpadden J. O., Mankins J. C. Space solar power programs and microwave wireless power transmission technology // IEEE microwave magazine. – 2002. – Ò. 3. – ¹. 4. – Ñ. 46-57.
2. Shinohara N. Power without wires // IEEE Microwave magazine. – 2011. – Ò. 12. – ¹. 7. – Ñ. S64-S73.
3. Zhu X. et al. Long-range wireless microwave power transmission: A review of recent progress // IEEE Journal of Emerging and Selected Topics in Power Electronics. – 2020. – Ò. 9. – ¹. 4. – Ñ. 4932-4946.
4. Vanke V. A., Lopukhin V. M., Savvin V. L. Satellite solar power stations // Sov. Phys. Usp. 20 989–1001 (1977).
5. Au N. D. et al. A 5.8-GHz rectifier using diode-connected MESFET for space solar power satellite system // IEEE Transactions on Microwave Theory and Techniques. – 2022. – Ò. 70. – ¹. 10. – Ñ. 4502-4510.
6. Saito K., Nishiyama E., Toyoda I. A 2.45-and 5.8-GHz dual-band stacked differential rectenna with high conversion efficiency in low power density environment // IEEE Open Journal of Antennas and Propagation. – 2022. – Ò. 3. – Ñ. 627-636.
7. Drubin C. NRL Conducts Successful Terrestrial Microwave Power Beaming Demonstration // Microwave Journal. – 2022. – Ò. 65. – ¹. 7.
8. Mizojiri S. et al. Subterahertz wireless power transmission using 303-GHz rectenna and 300-kW-class gyrotron // IEEE Microwave and Wireless Components Letters. – 2018. – Ò. 28. – ¹. 9. – Ñ. 834-836.
9. Bardenkov V. A. et al. About a microwave energy converter with a reversible magnetic field // Radiotekhnika i Elektronika. – 1976. – V. 21. – ¹. 4. – P. 821-828. (in Russian)
10. Vanke V. A. et al. To the analysis of physical processes in the transition region of a cyclotron energy converter // Radiotekhnika i Elektronika. – 1978. – V. 23. – ¹. 6. – P. 1217. (in Russian)
11. Vanke V. A. Transverse electron-beam waves for microwave electronics // Phys. Usp. – 2005. – 48 917–937 (2005).
12. Zhao X. et al. Analysis of the effect of field non-uniformity on energy conversion efficiency in a cyclotron-wave rectifier // Physics of Plasmas. – 2018. – Ò. 25. – ¹. 11.
13. Hu B. et al. A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier // Energy Reports. – 2021. – Ò. 7. – Ñ. 1154-1161.
14. Nusinovich G. S., Thumm M. K. A., Petelin M. I. The gyrotron at 50: Historical overview // Journal of Infrared, Millimeter, and Terahertz Waves. – 2014. – Ò. 35. – Ñ. 325-381.
15. Litvak A. G., Denisov G. G., Glyavin M. Y. Russian gyrotrons: Achievements and trends // IEEE Journal of Microwaves. – 2021. – Ò. 1. – ¹. 1. – Ñ. 260-268.
16. Chirkov A. V., Denisov G. G., Kuftin A. N. Perspective gyrotron with mode converter for co-and counter-rotation operating modes // Applied Physics Letters. – 2015. – Ò. 106. – ¹. 26.
17. Denisov G. G. et al. Phase-locking of second-harmonic gyrotrons for providing MW-level output power // IEEE Transactions on Electron Devices. – 2021. – Ò. 69. – ¹. 2. – Ñ. 754-758.
18. Ginzburg N. S., Nusinovich G. S., Zavolsky N. A. Theory of non-stationary processes in gyrotrons with low Q resonators // International Journal of Electronics Theoretical and Experimental. – 1986. – Ò. 61. – ¹. 6. – Ñ. 881-894.
19. Zotova I. V. et al. Formation of microwave soliton combs under cyclotron resonance interaction of electron beam with counter-propagating waveguide mode // Physics of Plasmas. – 2022. – Ò. 29. – ¹. 10.
20. Ginzburg N. S., Sergeev A. S., Zotova I. V. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators // Physics of Plasmas. – 2015. – Ò. 22. – ¹. 3.
21. Krivosheev P. V. et al. Numerical simulation models of forming systems of intense gyrotron helical electron beams // International Journal of Infrared and Millimeter Waves. – 2001. – Ò. 22. – Ñ. 1119-1145.
22. Proyavin M. D., Glyavin M. Yu., Manuilov V. N. Magnetically shielded electron-optical system of a continuous gyrotron with an operating frequency of 24 GHz // J. Communications Tech and Electronics. – 2017. – V. 62. – ¹. 10. – P. 1165-1171.
23. Gashturi A. P. et al. Development of a Two-Channel Quasi-Optical Converter for a Multifrequency Gyrotron in the Range of 176–250 GHz // IEEE Transactions on Electron Devices. – 2024.
24. Kuftin A. N. et al. First demonstration of frequency-locked operation of a 170 GHz / 1 MW gyrotron // IEEE Electron Device Letters. – 2023.
25. Sobolev D. I., Denisov G. G. Principles of synthesis of multimode waveguide units // IEEE transactions on plasma science. – 2010. – Ò. 38. – ¹. 10. – Ñ. 2825-2830.
26. Chew W. C. et al. (ed.). Fast and efficient algorithms in computational electromagnetics. – Artech House, Inc., 2001.
For citation:
Gashturi A.P., Glyavin M.Yu., Denisov G.G., Zheleznov I.V., Zotova I.V., Manuilov V.N., Samsonov S.V., Sergeev A.S. Development of a millimeter-wave cyclotron resonance rectifier for advanced systems of wireless energy transmission // Journal of Radio Electronics. – 2025. – ¹. 3. https://doi.org/10.30898/1684-1719.2025.3.14 (In Russian)