Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.3.3
ON THE PROPAGATION OF A PIECEWISE HOLOMORPHIC SIGNAL
THROUGH THE OH MASER SOURCE ASSOCIATED
WITH THE INFRARED STAR NML THE CON-STELLATION OF CYGNUS
N.S. Bukhman
Samara State Technical University,
443100, Samara, Molodogvardeyskaya str., 244
The paper was received October 16, 2024.
Abstract. Using the experimental data available in the literature on the emission spectrum of the OH maser source associated with the infrared star NML Cygnus, the calculation of the «response» of this particular maser to a piecewise holomorphic (=artificial) signal, the frequency of which dif-fers significantly (by several orders of magnitude) from the maser gain frequency, was carried out. The estimation of both the gain coefficient of the piecewise holonomic signal by maximum intensity and the gain coefficient by energy is obtained by this maser. It is shown that both gain factors can be significant, especially for «low-frequency» signals whose carrier frequency is lower than the maser gain frequency. The time dependence of the maser «response signal» is calculated, which does not depend on the parameters of the initial piecewise holomorphic signal. This may be useful in the experimental search for the «response signal» of a given maser.
Key words: radio signal, space maser, holomorphic signal, piecewise holomorphic signal, information transmission, signals of extraterrestrial civilizations
Corresponding author: Bukhman Nikolay Sergeevich, nik3142@yandex.ru
References
1. Strel'NitskiĬ V.S. Cosmic masers //Soviet Physics Uspekhi. – 1975. – Ò. 17. – ¹. 4. – Ñ. 507. https://doi.org/10.1070/PU1975v017n04ABEH004424
2. Townes C.H. Astronomical masers and lasers //Quantum Electronics. – 1997. – Ò. 27. – ¹. 12. – Ñ. 1031. https://doi.org/10.1070/QE1997v027n12ABEH001104
3. Varshalovich D.A. Mazernyj effekt v kosmose // Fizika kosmosa: Malen'kaya enciklopediya / Pod red. R.A. Syunyaeva, Yu.N. Drozhzhina-Labinskogo, Ya.B. Zel'dovicha i dr.. – 2-e izd. – M.: Sovetskaya enciklopediya, 1986. – S. 376–378.
4. Dickinson D.F. Cosmic Masers// Scientific American. – 1978. – V. 238. – ¹ 6. – P. 68. https://doi.org/10.3367/UFNr.0128.197906e.0345
5. Bukhman N.S. On the Propagation of Piecewise Holomorphic Signals Through a Cosmic Maser. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.25 (In Russian)
6. Bukhman N.S. On the distortion of a wave packet propagating in an amplifying medium //Quantum Electronics. – 2004. – Ò. 34. – ¹. 4. – Ñ. 299. https://doi.org/10.1070/QE2004v034n04ABEH002670
7. Bukhman N.S. On the normalisation of the observed spectral gain line profile with increasing optical thickness of a substance layer //Quantum Electronics. – 2000. – Ò. 30. – ¹. 9. – Ñ. 799. https://doi.org/10.1070/QE2000v030n09ABEH001815
8. Bukhman N.S., Kulikova A.V. The character of the dispersion of the refractive index near an isolated spectral line //Journal of Communications Technology and Electronics. – 2015. – Ò. 60. – Ñ. 502-506. https://doi.org/10.1134/S1064226915030080
9. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln. – 1979.
10. Vaĭnshteĭn L.A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138
11. Wang L.J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation //Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520
12. Talukder M.A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium //Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546
13. Dogariu A., Kuzmich A., Wang L.J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity //Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806
14. Akulshin A. M., Cimmino A., Opat G. I. Negative group velocity of a light pulse in cesium vapour //Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567. https://doi.org/10.1070/QE2002v032n07ABEH002249
15. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0
16. Akulshin A.M. et al. Pulses of» fast light,» the signal velocity, and giant Kerr nonlinearity //LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.
17. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy . – 2005. – V. 99. – No 1. – P. 81. https://doi.org/10.1134/1.1999897
18. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters //Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204
19. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816
20. Akulshin A.M., McLean R.J. Fast light in atomic media //Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001.
21. Malykin G.B., Romanets E.A. Superluminal motion //Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145
22. Zolotovskii I.O., Minvaliev R.N., Sementsov D.I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters //Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245.. https://doi.org/10.3367/UFNe.0183.201312e.1353
23. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect //Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801
24. Macke B., Ségard B. Optical precursors with self-induced transparency //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.
25. Macke B., Ségard B. Optical precursors in transparent media //Physical Review A–Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.
26. Boyd and R.W., Gauthier D.J. « Slow''and» fasf'light // Progress in Optics. – 2002. – V. 43. – P. 497.
27. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors //Physical Review A–Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837
28. Ravelo B. Investigation on microwave negative group delay circuit //Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106
29. Macke B., Ségard B. // Opt. Commun. 2008. V. 281. ¹ 1. P. 12-17. https://doi.org/10.1016/j.optcom.2007.09.007
30. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs //Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353
31. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics //Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050
32. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor //Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801
33. Du S. et al. Observation of optical precursors at the biphoton level //Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149
34. Macke B., Ségard B. Brillouin precursors in Debye media //Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814
35. Macke B., Ségard B. On-resonance material fast light //Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803
36. Bukhman N.S. On the relationship between the delay time of a narrowband signal |in a dispersing medium and its attenuation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.12 (In Russian)
For citation:
Bukhman N.S. On the propagation of a radio signal through the OH maser source associated with the infrared star NML Cygnus. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.3 (In Russian)