Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.3.3  

 

 

 

ON THE PROPAGATION OF A PIECEWISE HOLOMORPHIC SIGNAL
THROUGH THE OH MASER SOURCE ASSOCIATED
WITH THE INFRARED STAR NML THE CON-STELLATION OF CYGNUS

 

N.S. Bukhman

 

Samara State Technical University,
443100, Samara, Molodogvardeyskaya str., 244

 

The paper was received October 16, 2024.

 

Abstract. Using the experimental data available in the literature on the emission spectrum of the OH maser source associated with the infrared star NML Cygnus, the calculation of the «response» of this particular maser to a piecewise holomorphic (=artificial) signal, the frequency of which dif-fers significantly (by several orders of magnitude) from the maser gain frequency, was carried out. The estimation of both the gain coefficient of the piecewise holonomic signal by maximum intensity and the gain coefficient by energy is obtained by this maser. It is shown that both gain factors can be significant, especially for «low-frequency» signals whose carrier frequency is lower than the maser gain frequency. The time dependence of the maser «response signal» is calculated, which does not depend on the parameters of the initial piecewise holomorphic signal. This may be useful in the experimental search for the «response signal» of a given maser.

Key words: radio signal, space maser, holomorphic signal, piecewise holomorphic signal, information transmission, signals of extraterrestrial civilizations

Corresponding author: Bukhman Nikolay Sergeevich, nik3142@yandex.ru

References

1. Strel'NitskiĬ V.S. Cosmic masers //Soviet Physics Uspekhi. – 1975. – Ò. 17. – ¹. 4. – Ñ. 507. https://doi.org/10.1070/PU1975v017n04ABEH004424

2. Townes C.H. Astronomical masers and lasers //Quantum Electronics. – 1997. – Ò. 27. – ¹. 12. – Ñ. 1031. https://doi.org/10.1070/QE1997v027n12ABEH001104

3. Varshalovich D.A. Mazernyj effekt v kosmose // Fizika kosmosa: Malen'kaya enciklopediya / Pod red. R.A. Syunyaeva, Yu.N. Drozhzhina-Labinskogo, Ya.B. Zel'dovicha i dr.. – 2-e izd. – M.: Sovetskaya enciklopediya, 1986. – S. 376–378.

4. Dickinson D.F. Cosmic Masers// Scientific American. – 1978. – V. 238. – ¹ 6. – P. 68. https://doi.org/10.3367/UFNr.0128.197906e.0345

5. Bukhman N.S. On the Propagation of Piecewise Holomorphic Signals Through a Cosmic Maser. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.25  (In Russian)

6. Bukhman N.S. On the distortion of a wave packet propagating in an amplifying medium //Quantum Electronics. – 2004. – Ò. 34. – ¹. 4. – Ñ. 299. https://doi.org/10.1070/QE2004v034n04ABEH002670

7. Bukhman N.S. On the normalisation of the observed spectral gain line profile with increasing optical thickness of a substance layer //Quantum Electronics. – 2000. – Ò. 30. – ¹. 9. – Ñ. 799. https://doi.org/10.1070/QE2000v030n09ABEH001815

8. Bukhman N.S., Kulikova A.V. The character of the dispersion of the refractive index near an isolated spectral line //Journal of Communications Technology and Electronics. – 2015. – Ò. 60. – Ñ. 502-506. https://doi.org/10.1134/S1064226915030080

9. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln. – 1979.

10. Vaĭnshteĭn L.A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138

11. Wang L.J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation //Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520

12. Talukder M.A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium //Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546

13. Dogariu A., Kuzmich A., Wang L.J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity //Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806

14. Akulshin A. M., Cimmino A., Opat G. I. Negative group velocity of a light pulse in cesium vapour //Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567. https://doi.org/10.1070/QE2002v032n07ABEH002249

15. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0

16. Akulshin A.M. et al. Pulses of» fast light,» the signal velocity, and giant Kerr nonlinearity //LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.

17. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy . – 2005. – V. 99. – No 1. – P. 81.          https://doi.org/10.1134/1.1999897

18. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters //Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204

19. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816

20. Akulshin A.M., McLean R.J. Fast light in atomic media //Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001.

21. Malykin G.B., Romanets E.A. Superluminal motion //Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145

22. Zolotovskii I.O., Minvaliev R.N., Sementsov D.I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters //Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245.. https://doi.org/10.3367/UFNe.0183.201312e.1353

23. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect //Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801

24. Macke B., Ségard B. Optical precursors with self-induced transparency //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.

25. Macke B., Ségard B. Optical precursors in transparent media //Physical Review A–Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.

26. Boyd and R.W., Gauthier D.J. « Slow''and» fasf'light // Progress in Optics. – 2002. – V. 43. – P. 497.

27. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors //Physical Review A–Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837

28. Ravelo B. Investigation on microwave negative group delay circuit //Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106

29. Macke B., Ségard B. // Opt. Commun. 2008. V. 281. ¹ 1. P. 12-17. https://doi.org/10.1016/j.optcom.2007.09.007

30. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs //Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353

31. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics //Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050

32. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor //Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801

33. Du S. et al. Observation of optical precursors at the biphoton level //Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149

34. Macke B., Ségard B. Brillouin precursors in Debye media //Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814

35. Macke B., Ségard B. On-resonance material fast light //Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803

36. Bukhman N.S. On the relationship between the delay time of a narrowband signal |in a dispersing medium and its attenuation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.12  (In Russian)

 

For citation:

Bukhman N.S. On the propagation of a radio signal through the OH maser source associated with the infrared star NML Cygnus. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.3 (In Russian)