Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.3.4

 

 

 

ON THE PROPAGATION OF A VIDEO SIGNAL
THROUGH THE OH MASER SOURCE ASSOCIATED
WITH THE INFRARED STAR NML CYGNUS

 

N.S. Bukhman

 

Samara State Technical University,
443100, Samara, Molodogvardeyskaya str., 244

 

The paper was received October 20, 2024.

 

Abstract. The results of calculating the «response» of a space maser to a short video signal are presented. Approximate analytical estimates within the framework of the «Gaussian» approximation, suitable for an arbitrary space maser, are given. A numerical calculation was also carried out using experimental data available in the literature on the emission spectrum of a specific OH maser source associated with the infrared star NML Cygnus. The estimation of both the gain factor of the video signal by the given maser in terms of maximum instantaneous intensity and the gain factor of the video signal in terms of energy is obtained. It is shown that under certain conditions, both gain factors can be significant. Thus, the gain of the video signal in terms of instantaneous intensity can reach 30 Db. The energy gain of the video signal can reach 80 dB. The studied effects may be of interest when receiving weak cosmic video signals of both natural (holomorphic signals) and artificial (piecewise holomorphic signals) origin.

Key words: video signal, space maser, holomorphic signal, piecewise holomorphic signal, information transmission, signals of extraterrestrial civilizations.

Corresponding author: Bukhman Nikolay Sergeevich, nik3142@yandex.ru

References

1. Strel'NitskiĬ V.S. Cosmic masers //Soviet Physics Uspekhi. – 1975. – Ò. 17. – ¹. 4. – Ñ. 507. https://doi.org/10.1070/PU1975v017n04ABEH004424

2. Townes C.H. Astronomical masers and lasers //Quantum Electronics. – 1997. – Ò. 27. – ¹. 12. – Ñ. 1031. https://doi.org/10.1070/QE1997v027n12ABEH001104

3. Varshalovich D.A. Mazernyj effekt v kosmose // Fizika kosmosa: Malen'kaya enciklopediya / Pod red. R.A. Syunyaeva, Yu.N. Drozhzhina-Labinskogo, Ya.B. Zel'dovicha i dr.. – 2-e izd. – M.: Sovetskaya enciklopediya, 1986. – S. 376–378.

4. Dickinson D.F. Cosmic Masers// Scientific American. – 1978. – V. 238. – ¹ 6. – P. 68. https://doi.org/10.3367/UFNr.0128.197906e.0345

5. Bukhman N.S. On the Propagation of Piecewise Holomorphic Signals Through a Cosmic Maser. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.25 (In Russian)

6. Bukhman N.S. On the propagation of a radio signal through the OH maser source associated with the infrared star NML Cygnus. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.2 (In Russian)

7. Bukhman N.S., Kulikova A.V. The character of the dispersion of the refractive index near an isolated spectral line //Journal of Communications Technology and Electronics. – 2015. – Ò. 60. – Ñ. 502-506. https://doi.org/10.1134/S1064226915030080

8. Abramowitz M., Stegun I.A. (ed.). Handbook of mathematical functions with formulas, graphs, and mathematical tables. – US Government printing office, 1968. – Ò. 55.

9. Bukhman N.S. On the distortion of the rising edge of a carrier-free signal //Journal of Communications Technology and Electronics. – 2016. – Ò. 61. – Ñ. 1327-1337.https://doi.org/10.7868/S0033849416120056

10. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln. – 1979.

11. Vaĭnshteĭn L.A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138

12. Macke B., Ségard B. Optical precursors with self-induced transparency //Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.

13. Macke B., Ségard B. Optical precursors in transparent media //Physical Review A–Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.

14. Boyd and R.W., Gauthier D.J. « Slow''and» fasf'light // Progress in Optics. – 2002. – V. 43. – P. 497.

15. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors //Physical Review A–Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837

16. Sommerfeld A. Über die Fortpflanzung des Lichtes in dispergierenden Medien //Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 177-202.

17. Brillouin L. Über die Fortpflanzung des Lichtes in dispergierenden Medien //Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 203-240.

18. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs //Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353

19. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics //Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050

20. Du S. et al. Observation of optical precursors at the biphoton level //Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149

21. Macke B., Ségard B. Brillouin precursors in Debye media //Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814

 

For citation:

Bukhman N.S. On the propagation of a video signal through the OH maser source associated with the infrared star NML Cygnus. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.4 (In Russian)