Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹3

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.3.9

 

 

 

ENERGY LOSSES IN PASSIVE ELEMENTS
WITH COMPLEX DIELECTRIC PERMITTIVITY

 

G.F. Zargano1, T.S. Kharlanova2, A.V. Kharlanov2

 

1Southern federal university
344090, Russia, Rostov-on-Don, Zorge str., 5

2Volgograd state technical university
400005, Russia, Volgograd, Lenin ave., 28

 

The paper was received May 30, 2024.

 

Abstract. Electromagnetic energy losses in open waveguides and resonators are considered. Heating temperatures of passive elements depending on their thermophysical parameters are calculated. The electromagnetic energy absorbed by the material of a cylindrical open waveguide leads to its heating. In steady-state mode, the temperature does not change due to the heat flow through the side surface of the waveguide. The temperature of the waveguide predominantly drops as the wave passes, but for a certain thermophysical parameters, the maximum heating occurs not at the beginning of the waveguide. At intensities of the order of milliwatts per square centimeter, the temperature does not rise above 1 K. Considering the thermal heating of the resonator, the effective quality factor associated with the imaginary component of the relative dielectric permittivity of the medium is calculated. As this permittivity increases, the heating temperature also increases. The linear character of the dependence of the temperature of open waveguides and resonators on the intensity of the electromagnetic wave is shown. Materials of the article can be of practical use in radiophysical and biomedical researches.

Key words: open waveguide, open resonator, heating, effective quality factor, electromagnetic oscillations.

Corresponding author: Kharlanov Aleksandr Vladimirovich, harlanov_av@mail.ru

References

1. Ostrovskii L.A. Ehlektromagnitnye volny v neodnorodnoi nelineinoi srede s malymi poteryami // Izv. vuzov. Radiofizika. – 1961. – T. 4. – ¹. 5. – P. 955 – 963 (In Russian)

2. Gurevich G.L., Otmakhov YU.A., Rozenblyum E.A. O rasprostranenii ehlektromagnitnykh puchkov v girotropnykh sredakh // Izv. vuzov. Radiofizika.– 1965. – Ò. 8. – ¹ 4. – P. 725 – 737 (In Russian)

3. Kravtsov Y.A. Propagation of electromagnetic waves through a turbulent atmosphere // Reports on Progress in Physics. – 1992. – Ò. 55. – ¹. 1. – P. 39. https://doi.org/10.1088/0034-4885/55/1/002 

4. Li C. et al. Principles and Applications of RF/microwave in Healthcare and Biosensing. – Academic Press, 2016. https://doi.org/10.1016/B978-0-12-802903-9.0000

5. Krasnov V.M., Kuleshov YU.V., Gotyur I.A., Drobzheva YA.V. Vliyanie ostsilliruyushchego polyarizatsionnogo toka na pogloshchenie ONCH-radiovoln, rasprostranyayushchikhsya vdol' linii geomagnitnogo polya. // Zhurnal radioehlektroniki.– 2023. – ¹. 10. (In Russian) https://doi.org/10.30898/1684-1719.2023.10.5

6. Vdovin V.A., Gulyaev YU.V., Zakladnoi G.A., Maslennikov O.YU., Cherepenin V.A. Neteplovoe vozdeistvie moshchnykh mikrovolnovykh ehlektromagnitnykh impul'sov na nasekomykh-vreditelei zerna // Zhurnal radioehlektroniki. – 2023. – ¹. 8. (In Russian) https://doi.org/10.30898/1684-1719.2023.8.12

7. Zargano G.F., Kharlanov A.V. Resonant Excitation of Acoustic Vibrations of Spherical Thin Films by Electromagnetic Waves // Journal of Communications Technology and Electronics. – 2023. – Vol. 68, No. 10. – P. 1151-1158.. https://doi.org/10.1134/S1064226923080156

8. Wilmink G.J. et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues //Journal of biomedical optics. – 2011. – Ò. 16. – ¹. 4. – P. 047006-047006-10.  https://doi.org/10.1117/1.3570648

9. Wieliczka D.M., Weng S., Querry M.R. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water //Applied optics. – 1989. – Ò. 28. – ¹. 9. – P. 1714-1719. https://doi.org/10.1364/AO.28.001714

10. Alekseev S.I., Ziskin M.C. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects //IEEE transactions on biomedical engineering. – 2001. – Ò. 48. – ¹. 9. – P. 1013-1019. https://doi.org/10.1109/10.942591

11. Cifra M. Electrodynamic eigenmodes in cellular morphology //Biosystems. – 2012. – Ò. 109. – ¹. 3. – P. 356-366. https://doi.org/10.1016/j.biosystems.2012.06.003

12. Fayos Fernández J. et al. Temperature-dependent complex permittivity of several electromagnetic susceptors at 2.45 GHz. Delft.: AMPERE Newsletter Editor. – 2018.

13. Berdel K. et al. Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies // IEEE transactions on microwave theory and techniques. – 2005. – V. 53. – ¹. 4. – P. 1266-1271. https://doi.org/10.1109/TMTT.2005.845752

14. Glazunov P.S., Saletskii A.M., Vdovin V.A. Formirovanie fronta udarnoi volny pri rasprostranenii nanosekundnykh videoimpul'sov v slaboprovodyashchikh sredakh s temperaturnoi zavisimost'yu diehlektricheskoi pronitsaemosti. // Zhurnal radioehlektroniki. – 2023. – ¹. 10. (In Russian) https://doi.org/10.30898/1684-1719.2023.10.2

15. Fedorov N.N. Fundamentals of electrodynamics. M.: "Higher school", 1980. – P. 399. (In Russian)

16. Semenov N.A. Technical electrodynamics. M.: "Communication", 1973. P. 480. (In Russian)

17. Muchnik G.F., Rubashov I.B. Metody teorii teploobmena [ch. 1]- Teploprovodnost'. M.: Vysshaya shkola. – 1970. – P. 288. (In Russian)

18. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. – McGraw-Hill Book Company, 1968.

19. Il'chenko M.E. i dr. Diehlektricheskie rezonatory / Pod red. ME Il'chenko. M.: Radio i svyaz'. – 1989. – P. 328. (In Russian)

20. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen // Annalen der Physik. – 1908. – V. 330. – Issue 3. – P. 377 – 624.

21. Kharlanov A.V., Kharlanova T.S. Zatukhanie ehlektromagnitnykh voln i kolebanii v estestvennykh passivnykh ehlementakh // Ehlektromagnitnye volny i ehlektronnye sistemy. – 2022. – Ò. 27. ¹ 5. – P. 5–12. (In Russian) https://doi.org/10.18127/j5604128-202205-01

22. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei. M.: Nauka. – 1972. – P. 720 (In Russian)

23. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. M.: Ehnergoizdat. – 1981. P – 416. (In Russian)

24. Betskii O.V., Golant M.B., Devyatkov N.D. Millimetrovye volny v biologii. M.: Znanie. – 1988. – P. 64. (In Russian)

25. Betskii O.V., Putvinskii A.V. Biologicheskie ehffekty millimetrovogo izlucheniya nizkoi intensivnosti // Izv. vuzov MV i SSO SSSR. Radioehlektronika. – 1986. – Ò. 29. – ¹. 4. – P. 4-11. (In Russian)

26. Rubin A.B. Biofizika. T.1, 2. Biofizika kletochnykh protsessov. M.: Vyssh. shk.– 1987. – P. 303. (In Russian)

27. Betskii O.V., Lebedeva N.N. Low-intensity millimeter waves in biology and medicine // Bioelectromagnetic Medicine. – CRC Press, 2004. – P. 720-737.

28. Golant M.D. Acousto-electric waves in cell membranes of living organisms-a key problem for the understanding of mm-waves interaction with living organism // Biological aspects of low intensity millimeter waves. – 1994. – P. 229-249.

29. Zargano G.F., Kharlanov A.V. Sobstvennye kolebaniya i dobrotnost' sfericheskoi tonkoi plenki // Fizicheskie osnovy priborostroeniya. – 2022. – Ò. 11, ¹ 3(45). – P. 4-13. (In Russian) https://doi.org/10.25210/jfop-2203-004013

30. Foster K.R., Finch E.D. Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves //Science. – 1974. – Ò. 185. – ¹. 4147. – P. 256-258. https://doi.org/10.1126/science.185.4147.256

31. Lin J.C. The microwave auditory effect //Auditory Effects of Microwave Radiation. – 2021. – P. 127-173. https://doi.org/10.1109/JERM.2021.3062826.

For citation:

Zargano G.F., Kharlanova T.S., Kharlanov A.V. Energy losses in passive elements with complex dielectric permittivity. // Journal of Radio Electronics. – 2025. – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.9 (In Russian)