ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ TIGa_{1-x}Fe_xSe₂ В ПЕРЕМЕННЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ

С. Н. Мустафаева Институт Физики Национальной Академии Наук Азербайджана

Получена 24 апреля 2008 г.

Изучено влияние частичного замешения галлия железом в слоистых монокристаллах TlGaSe₂ на диэлектрические свойства полученных кристаллов в переменных электрических полях. Исследованы частотные зависимости тангенса угла duэлектрических потерь ($tg\delta$), duэлектрической проницаемости (ε) и ac-проводимости вдоль С-оси кристаллов в частотном диапазоне $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz. Установлено, что в переменных электрических полях в монокристаллах $TlGa_{1-x}Fe_xSe_2$ (x = 0; 0.001; 0.005 и 0.01) имеет место прыжковая проводимость $\sigma_{ac} \sim f^{0.8}$ по локализованным вблизи уровня Ферми состояниям. Установлено, что по мере увеличения содержания железа в кристаллах TlGa_{1-x}Fe_xSe₂ граничная частота, при которой имел место f^{0.8} – закон для проводимости, смещалась в сторону более низких частот. При высоких частотах в монокристаллах $TlGa_{1-x}Fe_xSe_2$ на зависимости $\sigma_{ac}(f)$ наблюдается суперлинейный участок f^n , где $n=1.1 \div 2.0$. Оценены плотность локализованных состояний, ответственных за ас-проводимость, среднее время и расстояние прыжков, разброс ловушечных состояний вблизи уровня Ферми в монокристаллах TlGa_{1-x}Fe_xSe₂ различного состава. Показано, что по мере увеличения содержания железа в кристаллах удельное сопротивление их уменьшается, среднее время и расстояние прыжков увеличиваются, а частота, при которой начинают проявляться релаксационные потери, смещается в сторону низких частот.

Слоисто-цепочечные кристаллы типа $TlB^{III}C_2^{VI}$ (B – In, Ga; C – S, Se, Te) обладают широким спектром практически важных физических характеристик, таких как высокая фото-, тензо-, рентгено-чувствительность. Физические свойства этих кристаллов очень чувствительны к внешним воздействиям: постоянное (dc) и переменное (ac) электрические поля; электромагнитные излучения видимого и инфракрасного диапазона, температура, давление, ионизирующие излучения [1 – 4]. Управлять физическими свойствами кристаллов $TlB^{III}C_2^{VI}$ возможно также путем

2

интеркалирования их металлическими ионами [5, 6] или за счет частичного замещения таллия, индия или галлия другим металлом [7].

Целью настоящей работы явилось изучение влияния частичного замещения галлия железом в слоистых монокристаллах TlGaSe₂ на диэлектрические свойства полученных кристаллов, измеренных на переменном токе.

Для получения гомогенных образцов состава $TlGa_{1-x}Fe_xSe_2$ (x = 0; 0.001; 0.005 и 0.01) был использован метод прямого синтеза, т.е. химическое взаимодействие исходных высокочистых (не менее 99.99) компонентов (Tl, Ga, Fe, Se). Для выращивания соответствующих монокристаллов использован метод Бриджмена. Синтезированные образцы TlGaSe₂, TlGa_{0.999}Fe_{0.001}Se₂, $TlGa_{0.995}Fe_{0.005}Se_2$ И TlGa_{0.99}Fe_{0.01}Se₂ в измельченном виде помещались в кварцевые ампулы длинной 10 ст и внутренним диаметром 1 cm. Вакуумированные до давления 10⁻³ Ра ампулы с соответствующими составами помещались в печь, имеющую две температурные зоны. В верхней зоне печи поддерживалась температура на ~ 100 К выше точки плавления указанных веществ, а во второй зоне – на 50 К ниже точки плавления. Скорость перемещения ампулы в печи составляла ~ 0.2 cm/h. При нахождении заостренного конца ампулы в зоне с температурой Т = Т_{пл} в нем образовывался зародыш кристаллизации, а указанная выше скорость перемещения ампулы в печи оказалась образовавшегося зародыша. Для установления подходящей для роста индивидуальности были сняты при одинаковых условиях дифрактограммы как от образцов, так и от их соответствующих монокристаллов. синтезированных Дифрактограммы повторяли друг друга, что свидетельствовало об однофазности всех составов. Рентгенографические данные образцов $TIGa_{1-x}Fe_xSe_2$ (x = 0; 0.001; 0.005 и 0.01) приведены в таблице 1.

Состав	Параметры решетки				Z	Пр. гр.	o_{x} (g/cm ³)	Сингония
	a(Å)	b(Å)	c(Å)	β	1	pp.		
TlGaSe ₂	10.772	10.771	15.636	100.6°	16	$P2_{1/n}$	6.425	Монокл.
TlFeSe ₂	11.971	5.48	7.112	118.16°	4	C2/m	6.700	Монокл.
$TlGa_{0.999}Fe_{0.001}Se_2$	10.774	10.772	15.640	100.6°	16	P2 _{1/n}	6.421	Монокл.
TlGa _{0.995} Fe _{0.005} Se ₂	10.778	10.775	15.646	100.6°	16	$P2_{1/n}$	6.414	Монокл.
$TlGa_{0.99}Fe_{0.001}Se_2$	10.781	10.778	15.652	100.6°	16	P2 _{1/n}	6.406	Монокл.

Таблица 1. Рентгенографические данные образцов TlGa_{1-x}Fe_xSe₂

Диэлектрические коэффициенты монокристаллов TlGa_{1-x}Fe_xSe₂ измерены резонансным методом с помощью куметра TESLA 560. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz. Точность определения резонансных значений емкости и добротности (Q = 1 / tgδ) измерительного контура ограничена ошибками, связанными со степенью разрешения отсчетов по приборам. Градуировка конденсатора имела точность ± 0.1 pF. Воспроизводимость положения резонанса составляла по емкости ± 0.2 pF, а по добротности ± 1.0 ÷1.5 деления шкалы. При этом наибольшие отклонения от средних значений составляли 3 – 4 % для є и 7 % для tgδ.

Образцы из TlGa_{1-x}Fe_xSe₂ были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна С-оси кристалла. В качестве электродов использовалась серебряная паста. Толщина монокристаллических пластинок и площадь обкладок для всех изученных плоских конденсаторов приведены в таблице 2.

Таблица 2. Геометрические размеры образцов

Состав кристалла	Толщина кристалла, ст	Площадь обкладок, cm ²
TlGaSe ₂	$9.5 \cdot 10^{-3}$	$8.0 \cdot 10^{-2}$
$TlGa_{0.999}Fe_{0.001}Se_2$	$8.0 \cdot 10^{-3}$	$11.5 \cdot 10^{-2}$
TlGa _{0.995} Fe _{0.005} Se ₂	$12.0 \cdot 10^{-3}$	$11.2 \cdot 10^{-2}$
$TlGa_{0.99}Fe_{0.01}Se_2$	$12.0 \cdot 10^{-3}$	$7.3 \cdot 10^{-2}$

В процессе электрических измерений образцы помещались в экранированную камеру. Все диэлектрические измерения проведены при 300 К.

На рис. 1 приведены результаты измерения тангенса угла диэлектрических потерь (tgδ) при частотах $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz в монокристаллах TlGa_{1-x}Fe_xSe₂ (кривые 1–4 отвечают значениям x = 0; 0.001; 0.005 и 0.01 соответственно). Как видно из рис. 1 все приведенные зависимости tgδ имели две ветви: монотонно спадающую и возрастающую. Частота f₀, при которой спад tgδ сменялся его ростом, уменьшалась по мере увеличения содержания железа в кристаллах, что наглядно видно из рис. 2. Уменьшение tgδ с частотой по гиперболическому закону свидетельствует о том, что основным видом диэлектрических потерь в монокристаллах TlGa_{1-x}Fe_xSe₂ при f < f₀ являются потери на электропроводность.

Рис.1 Частотные зависимости тангенса угла диэлектрических потерь для монокристаллов $TlGaSe_2(1)$; $TlGa_{0.999}Fe_{0.001}Se_2(2)$; $TlGa_{0.995}Fe_{0.005}Se_2(3)$; $TlGa_{0.99}Fe_{0.01}Se_2(4)$ при T = 300 K.

Рис.2 Зависимость частоты перехода от спада tg δ к его росту от содержания железа в кристаллах TlGa_{1-x}Fe_xSe₂.

В отличие от монокристаллов TlGaSe₂ и TlGa_{0.999}Fe_{0.001}Se₂, в которых при $f > f_0$ наблюдалось незначительное возрастание tgδ, в монокристаллах TlGa_{0.995}Fe_{0.005}Se₂ и TlGa_{0.99}Fe_{0.01}Se₂ при $f > f_0$ имел место значительный рост tgδ. Наличие возрастающей ветви на зависимости tgδ(f) позволяет сделать вывод о том, что наряду с потерями на электропроводность вносят свой вклад и релаксационные потери. Как видно из рис. 2 частота, при которой начинают проявляться релаксационные потери, смещается в сторону более низких частот при увеличении процентного содержания железа в кристаллах (максимальное смещение частоты f_0 составляло примерно один порядок величины).

В частотном диапазоне $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz измерена также электрическая емкость образцов. По значениям емкости образцов при различных частотах рассчитаны значения диэлектрической проницаемости (ϵ). На рис. 3 представлены частотные зависимости ϵ для образцов TlGa_{1-x}Fe_xSe₂ различного состава (кривые 1–4).

Рис.3 Частотная дисперсия диэлектрической проницаемости для TlGa_{1-x}Fe_xSe₂: 1 - x = 0; 2 - x = 0.001; 3 - x = 0.005; 4 - x = 0.01.

Из рис. З видно, что для всех исследованных образцов существенной дисперсии є не наблюдается во всем изученном диапазоне частот. Так, в TlGaSe₂ диэлектрическая

проницаемость показывала ~ 20%-ую дисперсию, а в составах, легированных железом – 26%-ую дисперсию.

На рис. 4 представлены экспериментальные результаты изучения частотной зависимости ас-проводимости монокристаллов TlGa_{1-x}Fe_xSe₂ при 300 К.

Рис.4 Частотно-зависимая ас-проводимость монокристаллов TlGaSe₂ (1); TlGa_{0.999}Fe_{0.001}Se₂ (2); TlGa_{0.995}Fe_{0.005}Se₂ (3); TlGa_{0.99}Fe_{0.01}Se₂ (4)

Кривая 1 на этом рисунке смещена на один порядок вверх, чтобы не перегружать нижнюю часть рисунка. Зависимость $\sigma(f)$ во всех кристаллах состояла из трех различных участков, так что в общем можно записать:

$$\sigma(f) = \sigma_1 + \sigma_2 + \sigma_3, \tag{1}$$

где $\sigma_1 \sim f^{0.5+0.6}$; $\sigma_2 \sim f^{0.8}$; $\sigma_3 \sim f^n$ (n>1). В TIGaSe₂ и TIGa_{0.999}Fe_{0.001}Se₂ (кривые 1 и 2 на рис. 4) показатель степени п был равен 1.1 и 1.4, соответственно, в то время как в составах с бóльшим содержанием железа n = 2 (кривые 3 и 4 на рис. 4). Начальная (f₁) и конечная (f₂) частоты, при которых наблюдался $f^{0.8}$ – закон для ас-проводимости, по мере увеличения содержания железа в кристаллах TIGa_{1-x}Fe_xSe₂ смещались в сторону низких частот (рис. 5).

Рис.5 Зависимость начальной (f_1) и конечной (f_2) частот участка f ^{0.8} от состава монокристаллов TlGa_{1-x}Fe_xSe₂.

Как известно, обычная ас-проводимость зонного типа является в основном $10^{10} \div 10^{11}$ Hz. Наблюдаемая частотно-независимой вплоть до нами экспериментальная зависимость $\sigma_{ac} \sim f^{0.8}$ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [8]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон [8], то полученный нами закон f^{0.8} свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [9]:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 k T N_F^2 a^5 f \left[\ln(\nu_{ph} / f) \right]^4,$$
(2)

где е – заряд электрона; k – постоянная Больцмана; N_F – плотность состояний вблизи уровня Ферми; а=1/ α – радиус локализации; α – постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; v_{ph} – фононная частота.

Согласно формуле (2) ас-проводимость зависит от частоты как $f[\ln(v_{ph}/f)]^4$, т.е. приблизительно пропорциональна f^{0.8} при f << v_{ph} . Подставив в формулу (2) значения $v_{ph} = 10^{12}$ Hz, f = 10⁶ Hz и T = 300 K, получим

$$N_F^2 = 2.1 \cdot 10^{50} \sigma_{ac}(f) a^{-5} \tag{3}$$

Вычисленные по формуле (3) значения N_F для монокристаллов TlGa_{1-x}Fe_xSe₂ составляли: $N_F = 10^{18}$ eV⁻¹·cm⁻³ для x = 0 и 0.01; $9.7 \cdot 10^{17}$ eV⁻¹·cm⁻³ для x = 0.005 и $1.3 \cdot 10^{18}$ eV⁻¹·cm⁻³ для x = 0.01. При вычислениях N_F для радиуса локализации взято значение a = 34 Å, полученное экспериментально для монокристалла GaSe [10] – бинарного аналога TlGaSe₂. В работах [1, 11] из экспериментов по изучению прыжковой проводимости поперек слоев монокристаллов TlGaSe₂ и TlGa_{0.999}Fe_{0.001}Se₂ на постоянном токе для N_F были получены значения $2 \cdot 10^{18}$ и $5.6 \cdot 10^{17}$ eV⁻¹·cm⁻³, соответственно. Следует отметить, что ас-проводимость по величине существенно превышала dc-проводимость изученных монокристаллов.

Согласно теории прыжковой ас-проводимости среднее время прыжка (т) носителя заряда из одного локализованного состояния в другое определяется по формуле [8]:

$$\tau^{-1} = v_{ph} \cdot \exp(-2\alpha R), \tag{4}$$

где R – среднее расстояние прыжка.

Экспериментально τ^{-1} находится как средняя частота, при которой наблюдается f^{0.8} – закон для σ_{ac} . Из зависимости $\sigma_{ac}(f)$ монокристаллов TlGa_{1-x}Fe_xSe₂ для τ получены значения, которые графически представлены на рис. 6. По мере увеличения содержания железа в кристаллах среднее время прыжка увеличивается от 6.3 \cdot 10⁻⁸ до 3 \cdot 10⁻⁷ s.

По формуле

$$R = (1/2\alpha)\ln(v_{ph}/f)$$
⁽⁵⁾

вычислены средние расстояния прыжков в монокристаллах TlGa_{1-x}Fe_xSe₂. На рис. 6 представлен график зависимости R от состава кристаллов, откуда видно, что с ростом х R растет от 190 до 216 Å.

Рис.6 Зависимость среднего времени прыжка (1) и среднего расстояния прыжка (2) в монокристаллах TlGa_{1-x}Fe_xSe₂ от содержания железа.

Эти значения R примерно в 5÷6 раз превышают среднее расстояние между центрами локализации носителей заряда в монокристаллах $TlGa_{1-x}Fe_xSe_2$. Из измерений dc-проводимости монокристаллов $TlGaSe_2$ и $TlGa_{0.999}Fe_{0.001}Se_2$ для R были получены в среднем значения, равные 133 и 184 Å, соответственно [1, 11].

Зная N_F и R по формуле [8]:

$$\frac{4\pi}{3}R^3 \cdot N_F \cdot \frac{\Delta J}{2} = 1 \tag{6}$$

можно оценить разброс ловушечных состояний (ΔJ) вблизи уровня Ферми. Оцененные нами значения ΔJ представлены для различных составов TlGa_{1-x}Fe_xSe₂ на рис. 7.

А по формуле

$$N_t = N_F \cdot \Delta J \tag{7}$$

мы определили концентрацию глубоких ловушек в монокристаллах $TlGa_{1-x}Fe_xSe_2$, ответственных за ас-проводимость (рис. 8, кривая 2). На этом же рисунке приведена

зависимость темнового удельного сопротивления монокристаллов TlGa_{1-x}Fe_xSe₂ в зависимости от состава, откуда видно, что введение железа в кристаллы уменьшает их удельное сопротивление.

Рис.7 Разброс ловушечных состояний вблизи уровня Ферми для различных составов TlGa_{1-x}Fe_xSe₂.

Рис.8 Зависимость удельного темнового сопротивления (1) и концентрации глубоких ловушек (2) от содержания железа в кристаллах TlGa_{1-x}Fe_xSe₂.

Как было показано выше, при f > f₂ (напомним, что f₂ – конечная частота участка f ^{0.8}) на зависимости $\sigma_{ac}(f)$ монокристаллов TlGa_{1-x}Fe_xSe₂ наблюдался суперлинейный участок f ⁿ, где n = 1.1÷2.0. Проводимость, пропорциональная f ² обычно наблюдается при высоких частотах и обусловлена оптическими переходами в полупроводниках [8, 9].

СПИСОК ЛИТЕРАТУРЫ

- 1. С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ **40**, 1, 48 (1998).
- 2. С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. ФТТ **38**, 1, 14 (1996).
- 3. С.Н. Мустафаева. ФТТ **46**, 6, 979 (2004).
- 4. А.У. Шелег, К.В. Иодковская, Н.Ф. Курилович. ФТТ **45**, 1, 68 (2003).
- 5. S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov. Materials Chemistry and Physics **40**, 2, 142 (1995).
- 6. С.Н. Мустафаева, М.М. Асадов. Неорган. материалы **33**, 7, 790 (1997).
- 7. С.Н. Мустафаева, Э.М. Керимова, Н.З. Гасанов. ФТТ **43**, 3, 427 (2001).
- Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1974) 472 с.
- 9. M.Pollak. Phil. Mag. 23, 519 (1971).
- 10. С.Н. Мустафаева. Неорган. материалы 30, 5, 619 (1994).
- 11. С.Н. Мустафаева, А.И. Гасанов, Э.М. Керимова. Известия НАН Азерб. Серия физ.техн. и мат. наук **23**, 5, 117 (2003).