JOURNAL OF RADIO ELECTRONICS, N5, 2014

RADIATION OF A DIPOLE LOCATED ON AXISOF A
SEMITRANSPARENT DISK

Vadim A. Kaloshin®, Kirill K. Klionovski?
'K otelnikov I nstitute of Radioengineering and Electronics of RAS

2JSC «Concern «Morinfor msystem-Agat»»

The paper is received on May 20, 2014

Abstract. Asymptotic formulas for scattering fields of arhiily oriented magnetic
and electric dipoles located on axis of a semiparent disk were obtained using the
Kirchhoff approximation and the stationary phasehod. Expressions for the front-
to-back ratio of magnetic and electric dipoles eel parallel to the disk were
obtained. Optimization of the disk’s transparen@swperformed to reduce the back
radiation of a magnetic dipole oriented parallethie disk. Radiation patterns were
calculated using the asymptotic formulas and a mwadesolution of a singular
integral equation.
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Introduction

Dipole, monopole and patch antennas are mountea perfectly conducting
disk to reduce the back lobe [1-22]. Asymptoticnfafas for a scattering field of
arbitrarily oriented electric and magnetic dipolesated on axis of a perfectly
conducting disk were obtained in [22]. A semitraargmt disk can be used to
decrease the back lobe and the front-to-back ratioomparison with a perfectly
conducting disk of the same radius. Asymptotic egpions for a scattering field of a
plane wave by an isotropic resistive semitransgadesk are available in [23].
Scattering of an electric monopole field by annspic resistive semitransparent disk
was researched numerically in [24]. Scattering opach antenna field by a
semitransparent disk with anisotropic inductive @ti@nce was considered in [25]

using numerical solving of an integral equation.plpers [24, 25] distributions of
1
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transparency were synthesized to decrease the loaek of the antennas on a
semitransparent disk in comparison with the santenaa on a perfectly conducting
disk of the same radius.

The first purpose of the present paper is to dessymptotic expressions for
scattering fields of electric and magnetic dipdtesated on axis of a semitransparent
disk. The second one is to find an optimal transpey of a disk using asymptotic
expressions to minimize the back radiation of ame#ig dipole oriented parallel to
the disk. The numerical solution of this problenusgd to check the accuracy of the
asymptotic solutions.

Let us consider a dipole oriented parallel and radignto the disk (Fig. 1). Itis

enough to determine the field of the arbitrariljeated dipole. The semitransparent

disk is characterized by reflection coefficierﬂi| (,0) /7;' (,0) and transmission

coefficients r;' (,0) T; (,0) for meridional and azimuthal polarization of a metiyn

field, respectively. In general case this coeffittsedepend on radial coordinat@and
the incidence angleﬁinc(p) =7ET+ arctarE%j. In this paper we assume that
2 2
‘ +‘rpH (,0)( <1l.

In the paper [21] it was shown that the Kirchhgffpeoximation provides a

5 (o) +/r8 (o) <1 andly (o)

good agreement with the exact solution for a seagefield of a magnetic current
ring mounted on a perfectly conducting disk. Theref we use the Kirchhoff
approximation to determine the scattering pattéth@ dipole located on an axis of a
semitransparent disk. The asymptotic expressionshi® scattering pattern derived
separately near and far from the aXidVe use the stationary phase method in a case
of stationary point far from end point [26] to evale asymptotically the Kirchhoff
integral for angles near the axis, and station&gsp method in a case of stationary
point near end point [27] for angles far from tixesa
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Fig. 1. The dipoles on axis of the semitransparent disk

1. Fields of the dipolesin free space

Let us consider a perpendicular magnetic dipole

im(x y,2) = m,d(x)o(y)a(2)2, (1)
and a parallel magnetic dipole
im(x y.2)=m,a(x)a(y)a(z)%, (2)

where,x, y, zare Cartesian coordinate®, and X, are the unit vectors in direction of
the Z-axis and theX-axis, respectively(x) — is the Dirac delta functiomy,, m, — are
moments of the magnetic dipoles.

Radial H,(r,6,¢), meridional H,(r,6,¢) and azimuthal H(r,6,¢)

components of magnetic field of the magnetic dipatefree space are

—ikr
Hr(r,H,(a):Zir:/ZV cosfE (1+_ij,

0 r2 IkI‘
. mk . e 1 1
H,(r,0,¢)=1—%—sin@ 1+—- , 3
ol1.6.9) A7RN r[ ikr (kr)Z) )

H,(r.6,0)=0,

in a case of the perpendicular magnetic dipole, and
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e—|kr 1
H,(r,6,¢)= 277W smﬁcosqp (1+Ej
0

. mk e"ikr 1 1
Holr,0,p)=- sf 1+—- , 4
o(r.6,9) |477cN0 cosgcosp=—| 1+ Wl (4)

.omk e 1 1
H (r,0,0)= 1+ = — ,
(”(r 2 I471&/V0 SNy r +ikr (kr)

in a case of the parallel magnetic dipdiere,r, 6, ¢ are spherical coordinates;

[ :\/—_1; k=2n/A;1is wavelength\, =1207.

Let us consider a perpendicular electric dipole

ie(x y,2) = p,8(x)a(y)a(2)2, (5)
and a parallel electric dipole
ie (% y.2) = p,a(x)aly)a(2)%. (6)

Here,p,, px — are moments of the electric dipoles. Componehtee magnetic field

of the perpendicular and parallel electric dipoléree space are respectively

Hr (r’e’w)zoa
H,(r,6,¢)=0, (7)
pzk —ikr ( i}
H,(r.6.9)=i o sing —| 1+
and
Hr (r’97¢):01
k —ikr 1
H,(r,6,¢)=-i Z’;T smqo : (1+Hj (8)

p k e—lkr ( 1 )
r,o, —X_cosfco 1+—
( ¢) 471 ¥ ikr

2. Scattering field in the Kirchhoff approximation

Let us define the asymptotic expressions for aziaiutH(r,8,¢) and

meridional H} (r,8,¢) components of field in far zone of the electric andgnetic
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dipoles. The dipoles locate on the axis of the diskadiusR on distancén above the

disk (Fig. 1). These expressions in the Kirchhpfr@ximation are
Hy(r.6,0)=H,(r,6,¢)e "% + IJp p.@Hp(r.6,p)do+
=0
- 4 9)
: T
+ [ JS(p,qo—fE)Hg(r,H,p)dp,
=0
R
H2(r,6,0)=H,(r,6,9e "% + | i?(p,w E’—TjHé’(rﬂ,p)dm
F=0 ’ (10)

R
+ [iglo.@HE(r.6,p)dp,
0=0

In (9), (10) the variablef =—1 for the perpendicular magnetic dipole or the pakal

electric dipole. The variableé =1 for the parallel magnetic dipole or the
perpendicular electric dipole. Radig (0, ¢) and azimuthalj;(0,¢) components of
an electric current of semitransparent disk arerd@hed using a boundary condition

=|20.2H]:
i5(0.9)=-21 (o (W 74 65(p) )
islo.@)=2 { (m L ,¢)C05(g5(p))_
(W 746" hojsin(o]
eS(p)=arcta{%}

The radialH, (r,6,¢), meridionalH ,(r,8,¢) and azimuthaH ,(r,6,¢) component

(11)

in (9)-(11) corresponds to the radial, meridionadl @azimuthal component in (3), (4),
(7) or (8) of analyzed dipolg., j2, js or jZ, respectively. Components of field in

far zone of rings of radial and azimuthal electuerents of radiug are
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’ ko . o qeK
HE(r.6,p)= éni" =~ [3-4(kosing) + 3. (kosind)| = —,

o kp . . e—ikr
Hg(r’e’ ,0) = Zcose[Jn_l(kpsmé?) - Jn+1(k,03|n‘9)] r

HE(.6,0)=1" L[, 4(kpsin6) - Iy (kosinG) e_rikr ,

(12)

o _ _.nko . e
Ho(r.6, p) = ~éni Tcose[Jn_l(kpS|n9)+Jn+1(kpsm<9)] —

Here Jm(u) Is the Bessel function of order, n=0 for the perpendicular magnetic

and electric dipoles, and=1 for the parallel magnetic and electric dipoles.

3. The asymptotic expressions of field near the axis
We assume that reflection and transmission coeffisi are slowly varying
functions. We use the stationary phase methodif2@] case of stationary point far
from the end point to evaluate asymptotically thiegrals (9), (10) near the axis. In
this case the contribution of stationary point dmel end point calculate apart. The

asymptotic expressions of field near the axis are

H,,(r.6, w)[eikhcosg +é&n, (htang)e™" 003‘9] -H,(r.6,¢), 0<6< Ul
HE(r.6.0)= | 2
H,(r.6,0), (htan(- 6))e"**? —H >(r,6,9), 7—2T< <
(13)
for the azimuthal component of field, and
H,(r.6, ¢)[e”<h %0+ ént) (htang)e™" Cose] ~H5(r,6,9), 0<8<”
H3(r.6,9)= | 2,
Ho(r.8,9)r)) (htan(r - 8))e""* —H 3(r,0,9) 7—27< <
(14)

for the meridional component of field. The azimllltha(”(r,@,w) and meridional

Hg(r,e,qo) component in (13), (14) corresponds to the azimudima meridional

component in (3), (4), (7) or (8) of analyzed d@gf,, |2, j or jZ, respectively.

6
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Scattering fields in far zone for the angles neae taxis in the Kirchhoff

approximation are

ip(ROHZ(r6.R)+ j;[R,qo—f’z’)H;f(r,a R)

H3(r,8,¢) = / 3 ,
(16,0 ik cod6°(R)) 1)
jS(R,gME ]Hp(r 6,R)+js(ReHZ(r.6,R)
H5(r,6,¢)=
o(r.0.9) ikcos(é?S R)
> -
Let us define the front-to-back rati€ 5 = (r - 2020 (0)‘ for parallel

‘H r—» o0,60= ﬂ(ﬂ‘

electric and magnetic dipoles in the Kirchhoff appmation using the asymptotic

expression (13) near tizeaxis:

Keg :‘ H (0)e ™ + qu_:_ ‘
is ok VR%+n? o 2in; (R (COS(@S )) [ 1 j+ (16)
B 2005(93 R? + h? kvR? +h? ikvVR? +h?
+ |23 (R)+ ) (Rlin S(R)))Z}[H - kz(R3+h2)]}
for the parallel magnetic dipole, and
< J_eikh +/7; So)e—ikh _ Hg_e |
‘ r; (O)e ikh Hg_e ‘ a7)

e T )

IR ikfREAnE ) S

for the parallel electric dipole.
4. The asymptotic expressions of field far from the axis
We use the asymptotic representation of the Bdasetion in (12) when the

argument is large and the stationary phase me@iddn a case of a stationary point
7
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near the end point to evaluate asymptotically titegrals (9), (10) far from the axis.
The asymptotic expressions of field far from thesaxe

HE(r,6.0)= H¢(r,0,¢){eikhcose/\/(7—; +eS(R)-ej ;

+¢én,, (htang)e™ "0 /\/(7—27 -6%(R)- 9] +

+1, (htan(7- 9))8*“”“’)((9 -2 6’3(R)j - |0 R) 7y (RH,(r.6,0)

« (g0 e (5 (6) - £l 0)- (- 07 (F (55 (6) - Flss
s 'khcose[p (s200)- Els2(0)- 0ri(F (s2(0) - Elsmi@)])-

.n COo¥4 \/ﬁ%() T s 8
- V27Kksing \/R? 4+ p? H¢’( §+9( R

|k(RsmH hz) (Z nznj —ik(RsinH hz) (Z nznj
e c e c

cod®,(6) +cos(6’S ) ) codO, (8 +cos(6’S ) (18)

for the azimuthal component of field, and
H3(0.60)= Holr0.0] 707 T 6°(R)-)

+¢énY (htang)e™ oo )((g -6°(R)- 9) +

+ ¥ (ntar(7r- 6))keo A{e—g —GS(R)H + | 2R (@), 1,6,

(e[ (65 (6) - £ s (0) - (-2 (< 55 6) - Floi (0)] +
+&e 'k“COSH[F ) ﬁ( ) 1)”i(F(s,2“(9))—E(sg‘(9))])+
).,

+ nsm( S( ))\/ﬁﬂp( 2 Lps
! V27ksing | R? + 2 9( 2 o(Rho )

T Nt IT nir
|k(RsmH R2+h2) —I( 4+2) —ik(Rsin9+\/ R2+h2) I( j
e e e e

12

g cod0,(6) +c05(¢9S ) i cog©,(6) +C°5(5’S ) |

(19)
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for the meridional component of field. The azimmth%(r,ﬁ,qo) and meridional

Hg(r,e,qo) component in (18), (19) corresponds to the azimudima meridional

component in (3), (4), (7) or (8) of analyzed d@gf,, |2, j or jZ, respectively.

—ix2

1 z=0 . . . .= e .
In (18), (19) x(z) = is the Heaviside function. Functidf(x) = - is

0, z<0 2./i 71X

the first term of the asymptotic expansion of thereskel integral
i -sign(x)x L _

F(x)= —sign(x)\/: [ e™dt. The arguments of the functiorfs(x) and F ()
T —00

in (18), (19) are

$(6)= \/mcos ©,(6)- QS(R)}

2
_ s
sh(8) =V 2kv/R? +h? cos 92(0)2 o*(R) :
59(6) =V 2kVR? +h? cos (91(0);05(R) :
sp'(8) =V 2kvR® + h® cos 9,(6) ; QS(R)}
- g—9,0s9<—
91(9):9’“5’ ©,(6)= = . -
27T+E_9, ESQS]T 062

5. The numerical solution of an integral equation
The scattering of a dipole field by the semitrameptidisk can be investigated
by solving a singular integral equation of the setd&ind numericallyConsider
boundary conditions on the surface of semitransypalisk:

B =67, [2ox(H —H7 )= Tum B = T (21)
Here, E7,H. are tangential components of the electric and miégfields on the

illuminated side of the semitransparent diﬁ{;,l—],‘ are tangential components of
9
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the electric and magnetic fields on the dark sitithe semitransparent disk5,,, is

the unknown electric current on the disk; add is the impedance tensor with
complex components$n the polar coordinates (Fig. 1) the boundary dooms (21)
take the form

+ _ - + _ -
E;=E,, E,=E

) X H+_H,;=j;_num’ H;_quz_jz_num- (22)

Ve
The electric current on the disk is associated whth tangential component of the

electric field on the disk's surface through theéaance tensaz :

E; _ er 0 j/e)_num 23
E+ - O Z -e ! ( )
(4 w J(ﬂ_num

H H
where Z,, (r):WOTf" (r) Zw(r):worﬁ (r) Consider the boundary condition
274 (r) 21, (r)

ES = Iﬁumi The tangential component of the electric fieldsist of an electric field

of a dipole in free spacét and an electric field of the unknown electric emtr

which expresses in terms of a Green’s tensor ., Mieobtain an integral equation of

the second kind relative to the unknown electricent of the disk:

[G(r.or @) isum('.9)dS + E, (r.9) = Z(1) Ium(r. 9. (24)
!

Here, G is the Green’s tensof’ is the surface of the disk. We use the method of

moments and the algorithm described in [21, 22,t85olve the integral equation

(24). The unknown electric currenf ., shall be decomposed over basis of triangular

elements:

N Ny . N(ﬂ

jr?um(r’¢):ro IrzAr(r_rn’¢)+%zlrﬁoA(o(r—rn1¢)- (25)
n=0 n=0

Here, I|,1# are unknown current amplitudeg; is the radial unit vectorg, is the

azimuthal unit vector. Basic functiongth bases2T, and 2T, have the form

10
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(r-r,,9)=0,

- 26
(r-r,@= [ el ] (N1, <r <(n+1)T,, (20)
for the perpendicular magnetic dipole, and
A(r-r,,9) = 1—‘1_—ansm¢7 (n-91. <r<(n+1)T,,
_ (27)

r—
A(r=ro.0)= ‘ ‘]cosqa n-1T,<r < (n+1)T,
T

for the parallel electric and magnetic dipoles. Thethod of moments reduces the
problem of scattering to a system of linear algebeguations. A matrix of the

unknown current’'s amplitudes can be determinedsglthis system:

A~ A~ ~\-1 ~

r=(W-A"G (28)
Elements of matrix of own and mutual impedanébsare calculated by numerical

integration of the Green's tensor compon&it$" ¥ and the basic functions:
AP = [B: ) (1 =1, @) [ GO O (1,00 F)A, (1 = 1, F)dS dS (29)
S S

A representation of component§ ¥ in spectral form was used during

calculations of the own and "nearest" mutual impeda in the matrixA. The basic
function was decomposed into a two-dimensional ieoumtegral over flat sheets of

electric current. Integral over the surfa8ein (29) was determined by integrating

fields of the flat sheets with componer@ (¥@ A representatiorG' @@ in
source-wise form for a ring of radial and azimutl@lrrent in the spherical

coordinates was used for purpose of reducing coaipat time in calculating the

"distant” mutual impedances in the matrik. Elements of a matrixj which
describes an interaction of field of a dipole ahd turrent of the disk have the

following form:

U rrn(@ = IAr(¢) (I’ > )Er (r,qa)dS (30)
S

11
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Elements of matrixv are defined as

WrL,r?),r(@ = Izr(@,r(@ (r)Ar(w) (I‘ - rm’(p)Ar(w) (I‘ —Ih, ¢)d3 (31)
S

The scattering field is determined by summing teklfof a dipole (3), (4), (7) or (8),
and the field of the electric current of the didlhe field of the disk’s electrical
current is determined by numerical integration @ds of radial and azimuthal
electrical current’s rings. The integration wasfpened over radius of the rings with
amplitude distribution (25).

6. The numerical and asymptotic resear ch of scattering by the disk

Let us consider a semitransparent disk of radta2f with magnitudes and

arguments of the reflection and transmission coieffits /7;' (,0)2/7;' (,0) and

T;' (p):rg (,0):1—/7;' (,0) which are shown in fig. 2. The components
Z.; (r)=2,,(r) of impedance tensor (23) are shown in fig. 3. Thesaponents are

normalized toAL.

1 20
0,8 »
" 10 §
=
o =
[T ot
[1:]
S 0,4 3
0™
s
0,2
Q ez "" 10

0,5A 1A 1,5A 2A
Radius of disk

Fig. 2. The distribution of magnitudes and arguments efréflection and

transmission coefficientd: — magnitude of the reflection coefficie@t:- magnitude

12
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of the transmission coefficier;— argument of the reflection coefficiedt-

argument of the transmission coefficient

0,3 20
S

2 15 2
£0,2 E
: :
© 10 3
2
20,1 0
= 5
=

0

0
0,5A 1A 1,5A 2A
Radius of disk

Fig. 3. The distribution of components of the impedancsae (23) on the disk’s

surface:l — normalized magnitude of the impedarize;argument of the impedance

Numerical results obtained using the numerical tgmiu of the integral
equation, the numerical integration of the Kirclhaotegral (formulas (9) and (10))
and the asymptotic formulas (13), (14), (18), (&8 shown in fig. 4 — 9. Figures 4
and 5 show patterns of the parallel magnetic dipodeinted on the disk iA-plane

Hé(r,é’m:gj and H-planeH ;(r,8,9=0), respectively. Figures 6 and 7 show
patterns of the parallel electric dipole locateddmstanceh=21 above the disk k-

plane H;(r,6,9=0) and H-plane Hg(r,é’m:gj, respectively. Figure 8 shows

patternsH (r,8,¢) of the perpendicular magnetic dipole located omadiseh=1.51

above the disk. Figure 9 shows pattetd§(r,8,¢) of the perpendicular electric

dipole mounted on the disk.

13
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-20 I'::*;::
l
-30
0 45 90 135
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Fig. 4. Patterns of the parallel magnetic dipole mountethe disk in£-plane:1 —

the numerical solution of the integral equati®r; the numerical integration of the

Kirchhoff integral (formula (9))3 — the asymptotic formula (13};— the asymptotic

formula (18).
Gain, dB
o T
200 |aaaaaaan.
-40
0 45 90 135

Angle, degree
Fig. 5. Patterns of the parallel magnetic dipole mountethe disk irH-plane:1 —

the numerical solution of the integral equati®r; the numerical integration of the

Kirchhoff integral (formula (10))3 — the asymptotic formula (143;— the asymptotic
formula (19)

14
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Gain, dB
10
0 /\
-10 “E
by
-201| ¢
1
......... 2
-30 3 )
......... 4
-40
0 45 90 135 180

Angle, degree
Fig. 6. Patterns of the parallel electric dipole abovedis& in £-plane:1 — the
numerical solution of the integral equati@: the numerical integration of the
Kirchhoff integral (formula (9))3 — the asymptotic formula (13};— the asymptotic
formula (18)

Gain, dB

10

0 45 90 135 180
Angle, degree

Fig. 7. Patterns of the parallel electric dipole abovedis& inH-plane:1 — the
numerical solution of the integral equati@: the numerical integration of the
Kirchhoff integral (formula (10))3 — the asymptotic formula (143;— the asymptotic
formula (19)
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10 Gain, dB

90

135 180
Angle, degree

numerical solution of the integral equati@: the numerical integration of the

Kirchhoff integral (formula (10))3 — the asymptotic formula (143;— the asymptotic

formula (19)
Gain, dB
10
0 LR
R 1.
10}
:E,_*: ...... 1 \:1"'&__,-‘% J;'i“; J I.I"._ill
-20|: 2 o i"'*,: i
L 3 L] II;.:
-30 _
0 45 90 135

Fig. 9. Patterns of the perpendicular electric dipole ntedon the diski — the

180
Angle, degree

numerical integration of the Kirchhoff integral {foula (9));2 — the asymptotic

formula (13);3 — the asymptotic formula (18)
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Figures 4-9 show that Kirchhoff approximation ha®d agreement with the

numerical solution of integral equation. Also, #mymptotic formulas (18), (19) are

good everywhere besidés<10” and §>17C", and formulas (13), (14) are good in
these regions. It make possible to calculate seagtdields in full space using
formulas (13), (14), (18), (19).

7. Sample of optimization
Let us optimize transparency of a disk of radRr24 to reduce the back
radiation of a parallel magnetic dipole locateddstanceh=0.05 above the disk.
We consider two goal parameters which are detednasea ratio of mean-square
power in lower hemisphere of a disk to mean-sqpaweer in upper hemisphere i

andH-plane. The goal parameter writes EsrandH-plane, respectively, as

T
[ H (r 0,p= ) dé
|‘/’:e;% , (32)
2 T 2
| Hg(r,e,ga:) deo
=0 2
and
\ >(r,0,p= o\ de
|9: . (33)

j >(r,0,9= O‘d@
9=0

In (32), (33) the asymptotic representationsH (r,6,¢) and H;(r,6,¢) are used
and it assumes that— . It was assumed that the disk is perfectly condgah its
center (i.e.7, (0)=0,7} (0)=0 and ;2 (0)=17;' (0)=1). This condition allows to
apply results to patch antennas with perfectly catidg ground.

The goal parameters are minimized by optimizatibmagnitudes of reflection

coefficientsn;| (,0) /7;' (p) and transmission:oefficientsT;,| (,0) r;' (p) using the

gradient optimization method for purpose of redgcthe back radiation in lower
17
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hemisphere. The optimal distributions of magnituwdereflection and transmission
coefficients and components of tensor (23) are shiowig. 10, 11. We supposed the

argument of these coefficients is zero. Distributaf magnitude of reflection and

transmission  coefficients /7;' (,0) r;' (,0):1—/7;' (,0) and /7;' (,0)
r;' (,0):1—/7;' (,0) iIs shown in fig. 10. Distribution of magnitude oénsor’s

componentZ,, (r) and Zw(r) is shown in fig. 11. These magnitudes are norredliz

to Wo.
Figures 12 and 13 show patterns of the parallelnsiag dipole located above
the semitransparent disk of radiBs21 with the optimal transparency if-plane

Hé(r,é’,qui—g and H-plane HZ(r,8,9=0), respectively. These figures show

curves of the numerical solution of the integraliagpn for the semitransparent disk

and perfectly conducting disk of the same radius.

1 Magnitude

-
-
- +
0 -t — oyt

0,54 1A 1,5A 2A
Radius of disk

Fig. 10. The distribution of the magnitude of reflectiordaransmission coefficients

on the disk’s surfacd: — magnitude of the reflection coefficierr;n},}| (,0); 2-—
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magnitude of the transmission coefficimﬂ (,0); 3 — magnitude of the reflection

c:oefficientl]lg| (,0); 4 — magnitude of the transmission coefficiefj't(p)

Normalized magnitude

05A 1A 1,5A 2A
Radius of disk

Fig. 11. The distribution of components of the impedancsae (23) on the disk’s
surface:l — normalized magnitude @, (r); 2 — normalized magnitude & ,,(r)

Gain, dB
o T 2\
.20 N
1
40
-60
0 45 a0 135 180

Angle, degree
Fig. 12. Patterns of the parallel magnetic dipole locateolva the disk irE-plane:1
— the semitransparent disk:- the perfectly conducting disk
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Fig. 13. Patterns of the parallel magnetic dipole locateolva the disk iH-plane:1
— the semitransparent disk:- the perfectly conducting disk

Figures 12, 13 show that radiation of parallel n&gndipole in the lower
hemisphere is reduced when transparency increamascenter to edge of the disk as
well as argument of coefficients of reflection atrdnsmission and components

Z,(r) and Z,(r) of impedance tensor (23) is zero. The front-to-beatio of the

parallel magnetic dipole in this case is 50.9 d@ & dB for the semitransparent

and perfectly conducting disk, respectively.

Conclusions
Asymptotic expressions for scattering field of ahitsarily oriented magnetic
and electric dipole located on axis of a semitranspt disk were obtained. Formulas
for the front-to-back ratio for dipoles oriented-gléel to the disk were presented.
Distribution of transparency for the radius of akdA was optimized which
provide significant reducing of back radiation @frallel magnetic dipole above the
disk.
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