"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2018

contents of issue      DOI  10.30898/1684-1719.2018.5.2     full text in Russian (pdf)  

Dynamic conductivity of nanogranulated films “metal-dielectric” on the microwave frequencies

I. V. Antonets 1, L. N. Kotov 1, E. A. Golubev 2, V. G. Shavrov 3, V. I. Shcheglov 3

1 Syktyvkar State University of Sorokin, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

2 Geology Institute Komy SC UrD RAS, Pervomaiskaya 54, Syktyvkar 167982, Russia

3 Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, Moscow 125009, Russia

 

 The paper is received on April 17, 2018

 

Abstract.  The dynamic conductivity of nanogranulated “metal-dielectric” films is investigated. This conductivity is determined from the electromagnetic microwave coefficient of reflection. It is paid attention to the fact of large (to several orders) excess of dynamic conductivity above static conductivity which is determined on the direct current. As s way of physical mechanism which is the foundation of dynamic conductivity it is established the inside-granulated currents model. The film is presented as a plane slide having configuration in the form of  square symmetry lattice. In the junctions of these lattice lines there are cubic granules having good conductivity. There granules are separated by dielectric gaps. The first electromagnetic wave following on the film creates reflecting and passing waves which are the second waves. For the interpretation of currents which are excited inside of granule it is proposed two models: closed and opened electric circuit. In connection with both models it is found the magnetic field of second wave for the case of infinite length film in both its coordinates in plane. On the basis of determined magnetic field it is found the reflection coefficient for primary wave from the film. For each of these models it is found the formulas which determine the specific conductivity of granule material through the reflection coefficient. It is shown that in the case of small size of gaps and large size of granules both models bring the same results. It is established that closed circuit model is applicable only in the case when gaps sixes are more less then granules sizes. It is established that open circuit model is applicable by arbitrary correlation between gaps and granules dimensions. It is made some recommendations for the experiments which may be the criterion of enough correct election between both models application.

Key words:  thin films, metamaterials, nanocomposit metal-dielectric, electromagnetic wave reflection, dynamic conductivity.

References

1. Suzdalev I.P. Nanotekhnologiya. Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology. Physics and chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow, KomKniga Publ., 2006  (In Russian)

2. Rit M. Nanokonstruirovanie v nauke i tekhnike. Vvedenie v mir nanorascheta [Nanodesignation in science and technology. Interaction to the nanocalculation world]. Moscow-Ijevsk, NITS “Regular and chaotic dynamics”.  2005 (In Russian)

3. Vendick I.B., Vendick O.G. Metamaterials and their application in microwaves: A review. Technical Physics. 2013. Vol. 58. No. 1. p.1-24. DOI https://doi.org/10.1134/S1063784213010234

4. Vinogradov A.P. Elektrodinamika kompozitsionnykh materialov [Electrodynamics of composite materials]. Moscow, URSS Publ., 2001 (In Russian)

5. Vinogradov A.P., Dorofeenko A.V., Zukhdi S. On the problem of the effective parameters of metamaterials . Physics-Uspekhi. 2008. Vol. 51. No. 5. pp.485-492. DOI: 10.1070/PU2008v051n05ABEH006533

6. Veselago V.G. Waves in metamaterials: their role in modern physics. Physics-Uspekhi. 2011. Vol. 54, No. 11. pp. 1161-1165 .181.  DOI: 10.3367/UFNe.0181.201111h.1201

7. Makeeva G.S., Golovanov O.S., Rinkevich A.B. A Probabilistic Model and Electrodynamic Analysis of the Resonance Interaction of Electromagnetic Waves with Magnetic 3D Nanocomposites. J. Comm. Technol. Electron. 2014. Vol. 59. No. 2. pp. 139-144. DOI: 10.1134/S1064226913120139  

8. Golovanov O.S., Makeeva G.S., Rinkevich A.B. Interaction of terahertz electromagnetic waves with periodic gratings of graphene micro- and nanoribbons.  Technical Physics. 2016. Vol. 61, No. 2. pp. 274-282. https://doi.org/10.1134/S1063784216020122

9. Makeeva G.S., Golovanov O.A. Matematicheskoe modelirovanie elektronnoupravlyaemykh ustroistv teragertsevogo diapazona na osnove grafena i uglerodnykh nanotrubok [Mathematical modeling of electronics-controlled theracycle-microwave devices based on grapheme and carbon nano-tubes]. Penza. Published by Penza State University. 2018. (In Russian)

10. Parimi P.V., Lu W.T., Vodo P., Sokoloff J., Derov J.S., Sridhar S. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett. 2004. Vol. 92. No. 12. pp. 127401(4).

11. Gulyaev Yu.V., Nikitov S.A., Zhivotovsky L.V., Klimov A.A., Taiad F., Presmanes L., Bonin K., Tsai Ch.C., Visotsky S.L., Philimonov Yu.A. Ferromagnetic films with magnon bandgap periodic structures: Magnon crystalsJETP  Letters. 2003. Vol. 77. No. 10. pp. 567-570  DOI 10.1134/1.1595698

12. Veselago V.G. Electrodynamics of substances having simultaneously values of ε and µ. Physics-Uspekhi. 1968. Vol. 10. No. 4. pp. 509-514 DOI: 10.1070/PU1968v010n04ABEH003699

13. Agranovich V.M., Garstein Yu.N. Spatial dispersion and negative refraction of light. Physics-Uspekhi. 2006. Vol. 49, No. 10, pp. 1029-1044 DOI: 10.1070/PU2006v049n10ABEH006067
14. Kalinin Yu.E., Remizov A.N., Sitnikov A.V. Electrical properties of amorphous (Co45Fe45Zr10)x(Al2O3)1-x nanocomposites. Physics of the Solis State. 2004. Vol. 46. No. 11. pp. 2146-2152.   DOI https://doi.org/10.1134/1.1825563
15. Ivanov A.V., Kalinin Yu.E., Nechaev A.V., Sitnikov A.V. Electrical and magnetic properties of [(CoFeZr) x(Al2Ox)1-x /(α-SiH)] n  multilayer structures. Physics of the Solis State. 2009. Vol. 51. No. 12. pp. 2474-2479. DOI https://doi.org/10.1134/S1063783409120087

16. Sitnikov A.V. Electric and magnetic properties of nanoheterogenius system metal-dielectric. Doctor’s degree thesis. Voronesh, Voronezh State Technical University, 2010 (In Russian)

17. Gerber A., Milner A., Groisman B. et al. Magnetoresistance of granular ferromagnets. Phys.Rev.B. 1997. V.55. ¹10. P.6446.

18. Kazantseva N.E., Ponomarenko A.T., Shevchenko V.G., Chmutin I.A., Kalinin Yu.E., Sitnikov A.V. Properties and perspectives of granular ferromagnets in microwave region application.  Fizika i khimiya obrabotki materialov - Physics and chemistry of materials processing. 2002. No. 1. p.5 (In Russian)

19. Lutsev L.V., Zvonareva T.K., Lebedev V.M. Electron transport in the granular amorphous carbon films with cobalt nanoparticles. Technical Physics Letters. 2001. Vol.27. No. 8. pp. 659-661.  DOI https://doi.org/10.1134/1.1398960

 20. Lutsev L.V. Spin excitations in granular structure with ferromagnet nanoparticles. Physics of the Solis State. 2002. Vol. 44. No. 1. pp. 102-110.

21. Antonets I.V., Kotov L.N., Nekipelov S.V., Shavrov V.G., Shcheglov V.I. Electrodynamic properties of thin metal films having different thickness and surface morphology. J. Comm. Technol. Electron. 2004. Vol. 49. No. 10. pp. 1164-1170.  

22. Antonets I.V., Kotov L.N., Shavrov V.G., Shcheglov V.I. Conducting and reflecting properties of nanometer-width films of various metals. J. Comm. Technol. Electron. 2006. Vol. 51. No. 12. pp. 1394-1400.  DOI https://doi.org/10.1134/S1064226906120096  

23. Vlasov V.S., Gushchin N.N., Kotov L.N., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. The electromagnetic waves reflection from composite structure having metal nanogranules in dielectric matrix.  Transactions of XIX International Conference “Electromagnetic field and materials”. 2011. Moscow, National Research University "Moscow Power Engineering Institute. p. 194.

24. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Specific Features of Static and Dynamic Conduction of a Composite Film Containing Metal Nanogranules in Dielectric Matrix. J. Comm. Technol. Electron. 2014. V.59. ¹9. P.920-932.  

25. Kalinin Yu.E., Kotov L.N., Petrunov S.N., Sitnikov A.V.The particularity of microwave reflection from granulated (CO45FE45ZR10)X(AL2O3)100-X films. Bulletin of the Russian Academy of Sciences: Physics. 2005. Vol. 69. No. 8. pp.1195.  (In Russian)

26. Antonets I.V., Kotov L.N., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of amorphous nanogranulated films in microwave region. Tech. Phys. Letters. 2014. Vol. 40. No. 7. pp. 584-586.  

27. Rinkevich A.B., Perov D.V., Vaskovsky V.O., Gorkovenko A.N., Kuznetsov E.A. Microwave resistance of metal-dielectric film nanocomposites Cox(SiO2)1-xProceedings of the 40th European Microwave Conference. 2010. Paris. France. P.894-897.

28. Rinkevich A.B., Perov D.V., Vaskovsky V.O., Gorkovenko A.N., Kuznetsov E.A. Millimeter wave resistance of metal-dielectric Cox(SiO2)1-x and Cox(Al2O3)1-x films.  IEEE Transactions on Nanotechnology. 2017. Vol. 16. No. 6. pp. 1067-1072.

29. Antonets I.V., Kotov L.N., Kirpicheva O.A., Golubev E.A., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. Static and Dynamic Conduction of Amorphous Nanogranulated Metal–Dielectric CompositesJ. Comm. Technol. Electron. 2015. V.60. No. 8. pp. 904-914.   DOI: http://dx.doi.org/10.1134/S1064226917110110

30. Antonets I.V., Vlasov V.S., Kotov L.N., Kirpicheva O.A., Golubev E.A., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. The static and dynamic conductivity of nanogranulated films “metal-dielectric”. Zhurnal Radio electroniki – Journal of Radio Electronics. 2016. ¹5. Available at: http://jre.cplire.ru/jre/may16/10/text.pdf. (In Russian).

31. Antonets I.V., Kotov L.N., Shavrov V.G., Shcheglov V.I. The static and dynamic conductivity of nanogranulated films “metal-dielectric”.  Transactions of XXIII All-Russia conference “Electromagnetic field and materials”. Moscow, INFRA-M Publ.,  2015. p. 159 (In Russian)

32. Antonets I.V., Kotov L.N., Golubev E.A., Shavrov V.G., Shcheglov V.I. Structure, conductivity and microwave reflection properties of amorphous nanogranulated composite films Transactions of conference “Phase transitions, critical and nonlinear phenomenon in condensed media”. Institute of Dagestan scientific centre of RAS. Makhachkala. 2017. P.444.  (In Russian)

33. Antonets I.V., Shavrov V.G., Shcheglov V.I. Mechanism of forming reflected and passed electromagnetic waves by the incidence to nanogranulated film “metal-dielectric”.  Transactions of XXII International conference “Electromagnetic field and materials”. Moscow, National Research University "Moscow Power Engineering Institute. 2014. P.111. (In Russian)

34. Antonets I.V., Shavrov V.G., Shcheglov V.I. Mechanism of inside-granule currents as a condition of forming dynamic microwave conductivity of amorphous nanogranulated films “metal-dielectric”.  Transactions of “XVI International winter school-seminar by misrowave radio-physics and electronics”. Saratov, OOO “Publication center “Nauka”. 2015. p. 31.

35. Antonets I.V., Kotov L.N., Kirpicheva O.A., Golubev E.A., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. The dynamic conductivity mechanism in amorphous nanogranulated films “metal-dielectric” in microwave region.  Zhurnal Radio electroniki – Journal of Radio Electronics. 2014. ¹4. Available at: http://jre.cplire.ru/jre/apr14/12/text.pdf. (In Russian).

36. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The investigation of conductivity in graphene-contained shungite by wave-guided method.  Transactions of international symposium “Perspective materials and technologies”. Vitebsk: Belarus. 2017. p.6.  

37. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of graphene-contained shungite in microwave region.  Transactions of conference “Phase transitions, critical and nonlinear phenomenon in condensed media”. Institute of Dagestan scientific centre of RAS. Makhachkala. 2017. P.432. 

38. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of graphene-contained shungite in microwave region.  Transactions of XXV International conference “Electromagnetic field and materials”. Moscow, National Research University "Moscow Power Engineering Institute. 2017. p.135.

39. Vainshtein L.A. Elektromagnitnye volny [Electromagnetic waves]. Moscow, Sovetskoe Radio Publ., 1957 (In Russian)

40. Kalashnikov S.G. Elektrichestvo [Electricity]. Moscow, Nauka Publ., 1964. (In Russian)

41. Sivukhin D.V. Obshiy kurs ffiziki [Whole course of physics]. V.3. Electricity. M.: Nauka. 1977. (In Russian)

42. H.B. Dwight.  Tables of integrals and other mathematical formulas. The Macmillan Company; 4th edition (December 1, 1961). ISBN-13: 978-0023311703

 

For citation:
I. V. Antonets, L. N. Kotov, E. A. Golubev, V. G. Shavrov, V. I. Shcheglov. Dynamic conductivity of nanogranulated films “metal-dielectric” on the microwave frequencies. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 5. Available at http://jre.cplire.ru/jre/may18/2/text.pdf

DOI  10.30898/1684-1719.2018.5.2